Via Fill in Small Trenches using Hot Aluminum Process

By Alice Wong

Goals for Project

- Good Via Fill in Small contact holes using hot aluminum process
- Be able to get good images of the contact holes using the Scanning Electron Microscope

Goals for Project

- Good Via Fill in Small contact holes using hot aluminum process
- Be able to get good images of the contact holes using the Scanning Electron Microscope

Goals for Project

- Good Via Fill in Small contact holes using hot aluminum process
- Be able to get good images of the contact holes using the Scanning Electron Microscope

Equipment

- Furnaces
- o Sinks
- Novellus
- o Leo
- ASM Lithography
- SVG Coat 6
- SVG DEV 6
- Nanospec
- o ASIQ

- o Matrix
- UV Bake
- Microscopes
- Wafer Saw
- o Centura-mxp

• Start with 6" P type Prime wafers

Silicon Wafer

o Grow ~2 um LTO

- Sink 6
- Tystar 11 (LTO)
- Tystar 2 (Anneal)

Photolithography

- SVG Coat 6
- ASML (CMOS 180 Contact Mask)
- SVG DEV 6
- UV Bake

o Etch

Centura- MXP

o Aluminum Deposition

Novellus

\circ Grow ~1 Micron of LTO

- Sink 5
- Tystar 12
- o NO Anneal

Hot AI Process

Cold AI Process

	Al Etch	Ti Glue Al	AI TSP	AI TSP		Al Etch	Ti Glue Al	AI TSP
Heater Temp	400	50	500	500	Heater Temp	400	300	350
Ar flow/ pres.	1.4 mT	40 sccm	4 mT	4 mT	Ar flow/ pres.	1.4 mT	5 sccm	2 mT
Etch/ Dep Power (kW)	25%	15%	84%	9%	Etch/ Dep Power (kW)	25%	60%	75%
Dep/ Etch Time(s)	45	56	21	195	Dep/ Etch Time(s)	45	19	47
Back Side Argon on?	Yes	Yes	No	Yes	Back Side Argon on?	Yes	Yes	Yes

Hot Al Process

Hot Al Process

AI Flowed

$C_s = (T_{thin} / T_{thick}) \times 100$

Results

Contact Size

	Depth —								
	.66 um	.57 um	1.19 um	1.04 um	1.62 um	1.63 um			
10 um	93%	68%	80%	49%	78%	72%			
2 um	56%	49%	13%	30%	18%	34%			
1 um	22%	32%	7%	13%	16%	13%			
.5 um	31%	18%	6%	7%	5%	9%			
.35 um	×	3%	2%	5%	2%	3%			

Spiking

AI Alloy Planarization Methods

-Standard Two Step Process -Reflow

Enhanced Mobility

<u>Contact or Via</u> ≥0.6 um

AI Alloy Planarization Methods

-Standard Two Step Process -Reflow

Enhanced Mobility

<u>Contact or Via</u> ≥0.6 um

AI Alloy Planarization Methods

-Standard Two Step Process -Reflow

Enhanced Mobility

-Low Pressure Two Step Process

Directional Sputter Neutrals

<u>Contact or Via</u> ≥0.6 um <u>Contact or Via</u> ≥0.35 um

Conclusion

- Get better step coverage using the Hot Al Process
- Hot Al process is designed for contacts down to .6 um
- Still unable to get complete contact fill
- Future Directions
 - Improve the cross sectioning

 Use focus ion beam (FIB)
 - Effect of Ti on this process
 - Include Collimation

What I learned

- Learned about different types of equipment
- Learned about lab safety procedures
- Became familiar with Microlab jargon
- Became familiar with Lab Maintenance procedures
- Became familiar with the Wand

Acknowledgements

- Thank you Kim Chan, Sia Parsa, Laszlo Petho, Attila Szabo, Jimmy Chang, Joe Donnelly and Rosemary Spivey
- Thanks to Katalin Voros for giving me such a wonderful opportunity
- Thanks to Daniel Queen for being my mentor, explaining things when I didn't understand them, and for helping me get acquainted with the lab
- Thanks to Marilyn Kushner for taking us to Semi Con
- Thanks to Chris and Eric for helping me run my process
- Thanks to the Lab Assistants for letting me follow you around

Novellus Hot Aluminum Process

- Using two layer aluminum films deposited at different temperatures will improve step coverage. To do this, the AI Two Step Process (TSP) is used
- Deposit 500 A Ti under layer (used as glue layer) cold just before Al. The Ti cold layer not only works as a glue, but also enhances capillary action that draws Al into trench.

Novellus Hot Aluminum Process

- Deposit a 400 nm cold Aluminum layer at high deposition rate (> 190 A/sec) on a cold wafer. No back side Argon during deposition, this will keep the wafer temperature low.
- 3. Deposit a hot layer at a slow rate with Back Side Argon on. With the BSA on, the wafer temperature ramps up quickly to a high temperature. The low deposition rate allows time for the surface migration of AI atoms to fill in the trench.