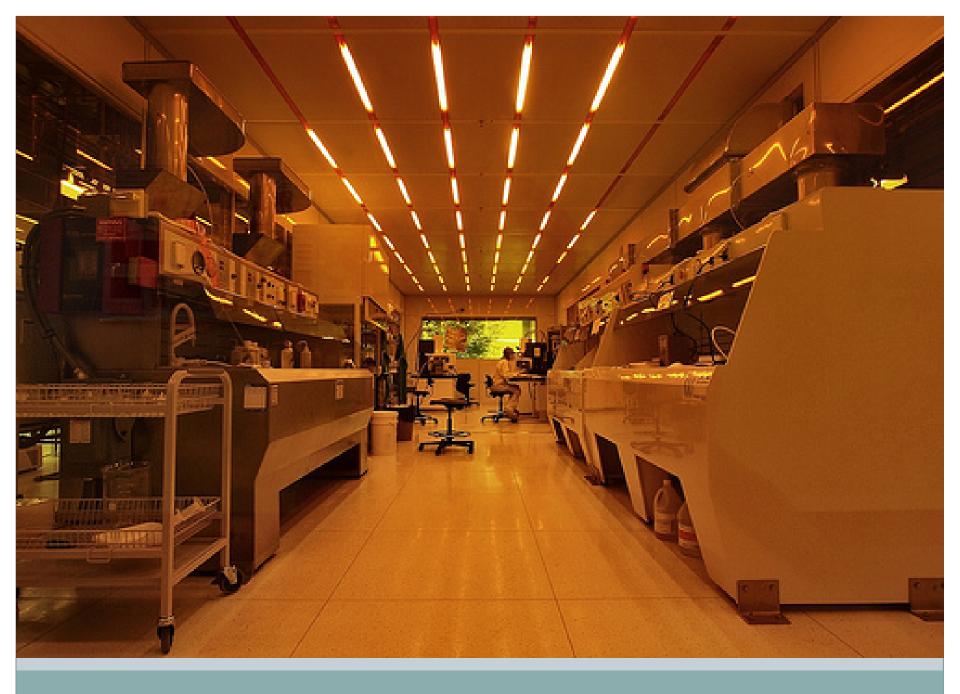


Marvell NanoLab Summer

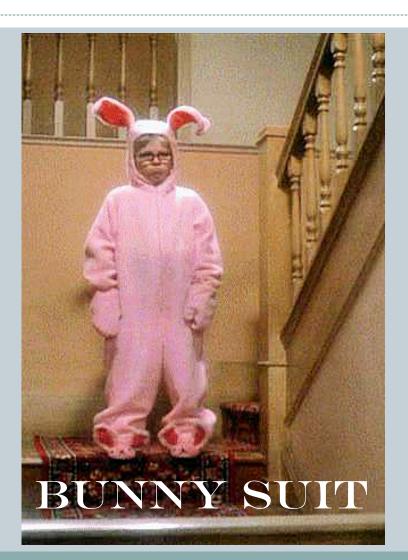
Internship 2011

BY KATE O'BRIEN TAMALPAIS HIGH SCHOOL



A:

My school interests; Math & Science *and* A father with an Engineering degree



My next logical question: Would I like math & science **outside** of school, and quite possibly, **engineering**?

The Essentials

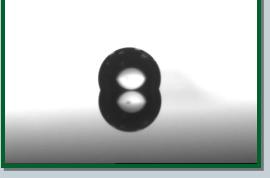
Experiment Objectives

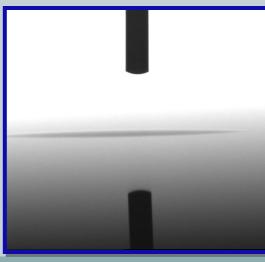
PART A

- Modify silicon surface wetting properties
- Improve photoresist adhesion to oxides via HMDS application
- Test various HMDS application methods for best deposition

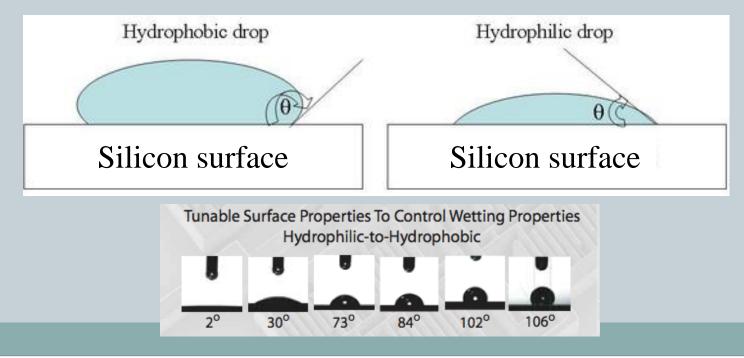
PART B

- Promote adhesion and reduce stiction on MEMS devices via monomolecular film coatings
- Modify wetting properties on BioMEMS devices via mono-molecular film coatings


What are Wetting Properties?


Hydrophobic

Repels water

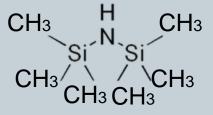


Hydrophilic

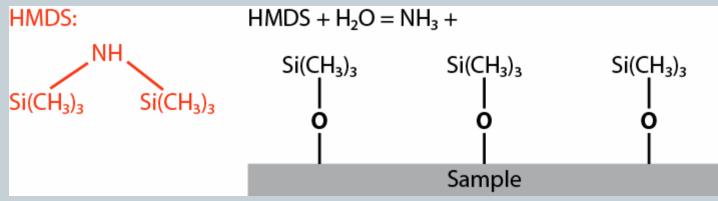
Attracted to, and tends to be dissolved by water

Kruss Contact Angle Measurement System

- Uses a sessile water drop method to estimate wetting properties on surfaces
- Measures the angle between the baseline of the drop and the drop boundary



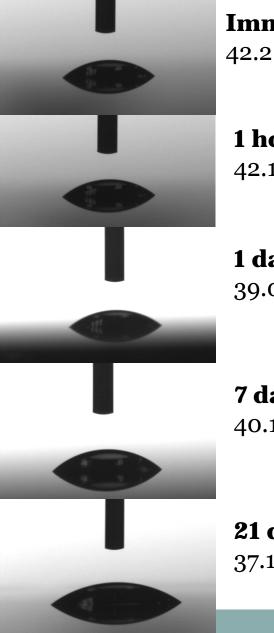
HMDS TREATMENT WITH DIFFERENT APPLICATION METHODS


MEASURING CONTACT ANGLES

HMDS

- HMDS = Hexamethyldisilazane
- Organosilicon compound

- Used to improve photoresist adhesion to oxides
- Reacts with the oxide surface forming a strong bond, but at the same time leaving free bonds to react with the photoresist


#1 Msink3 Bubbler Tank

•Does not dehydrate wafers

•Manually timed cycle – 1 minute HMDS treatment

•NO heat

Immediately

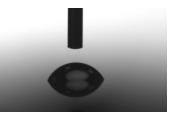
1 hour later

42.1

1 day later 39.0

7 days later 40.1

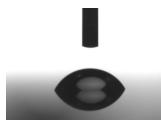
21 days later 37.1



#2 Svgcoat6

•1 minute HMDS treatment with N2 pump and purge cycles before application

•hot plate $100^{\circ}C$


1 hour later 64.5

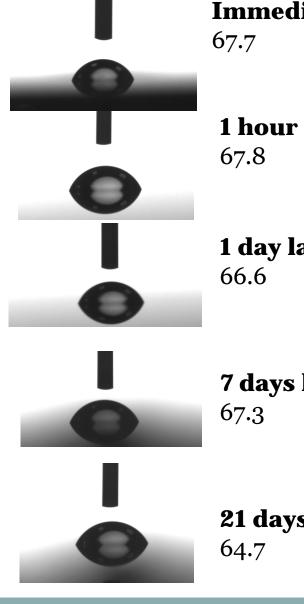
Immediately

65.2

1 day later 63.7

7 days later 62.3

21 days later 62.7



#3 Primeoven Program 0

•1 minute HMDS treatment with three N2 pump and purge cycles before application

•90°C

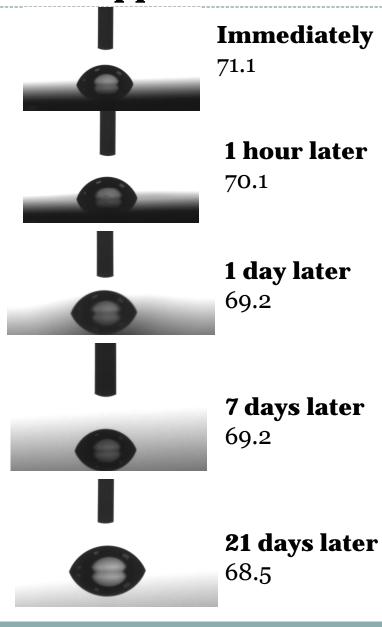
Immediately

1 hour later

1 day later

7 days later

21 days later

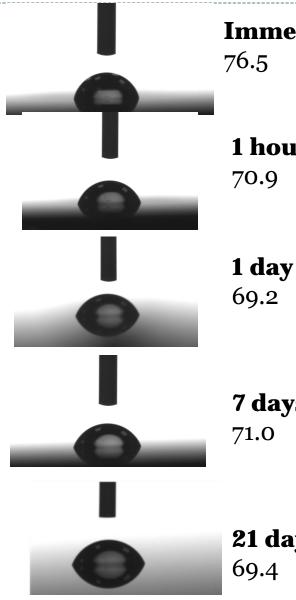


#4 Primeoven Program 2

•2 minute HMDS treatment with one long pump down before application

•90°C

#5 Primeoven with Oxide Wafer


ADS

•2 minute HMDS treatment with one long pump down before application

•1000A oxide wafers

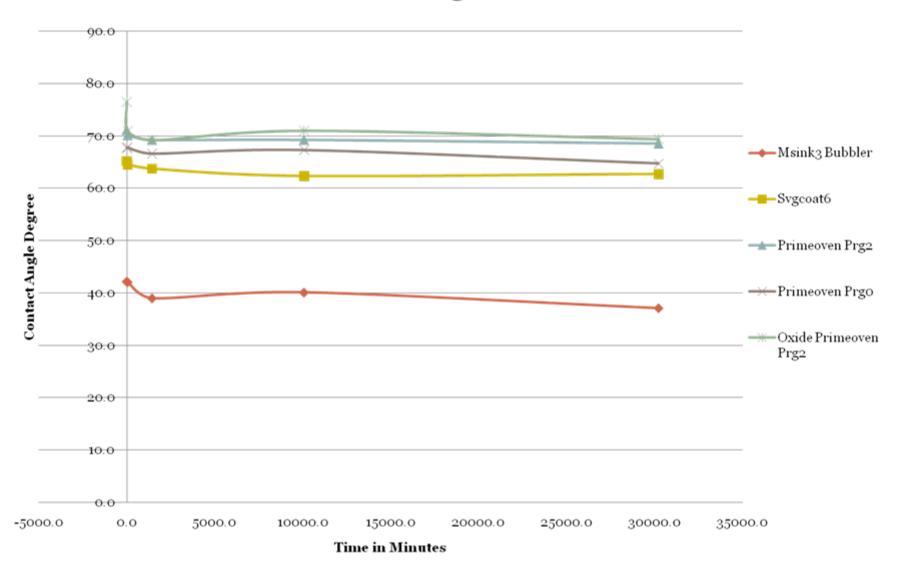
•90°C

Immediately

1 hour later

1 day later

7 days later


21 days later

HMDS Application Method	Contact Angle Measurement <i>Taken</i> <i>Immediately</i>	Kruss Contact Angle Image
Msink3 Bubbler for 1 minute	42.2	
Svgcoat6 for 1 minute	65.2	
Primeoven Program o for 1 minute	67.7	
Primeoven Program 2 for 2 minutes	71.1	
Primeoven Program 2 <i>on an</i> <i>Oxide Wafer</i> for 2 minutes	76.5	

HMDS Contact Angle Measurement

ĪH

HMDS Application Conclusions

- Since the Svgcoat6 and Primeoven methods were baked, pumped and purged, the contact angles didn't degrade in 3 weeks because HMDS bonded with the oxide surface and sealed out moisture.
- Therefore, after HMDS treatment in the Svgcoat6 and Primeoven, it may still be possible to coat the photoresist on the wafers after 3 weeks.
- The Msink3 method did not bake the wafers nor did it pump out the extra water vapor. Therefore, the contact angle changed over time as the wafers absorbed some moisture.

Part B

USING THE AMST TO DEPOSIT MONOLAYER FILM

MEASURING CONTACT ANGLES

AMST Machine

- AMST is a molecular vapor deposition system that can deposit single layer mono-molecular films. Monolayer deposition is used to change the surface properties of MEMS and BioMEMS structures.
- Room temperature vapor deposition

Sample Applications:


- Deposition of FOTS: increases surface hydrophobicity desired by MEMS devices
- Deposition of organosilane monolayers to enable covalent attachment of specific receptor molecules to BioMEMS sensor surfaces

AMST Available Gases

- Line 1 deionized water vapor A small amount of water vapor is required for reaction of most chlorinated or oxy silanes to react with silica surfaces
- Line 2 labmember proposed chemistries, our experiment used Gamma-methacryloxypropyltrimethoxysilane (Gamma-MPS)
- Line 3 Fluoro Octo Trichloro Silane (FOTS)
- Oxygen

Used for substrate surface condition and chamber cleaning

Steps for Using the AMST

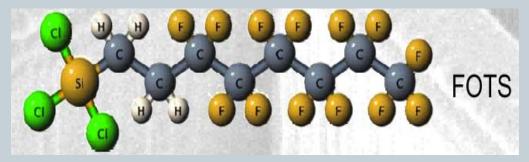
- Vent chamber
- II. Open & Load wafer
- III. Run Process
- IV. Starts with Purge, followed by RF treatment, Vapor Injection, Process Reaction & final Purge cycles

≈25 minutes

- v. Vent chamber
- VI. Open & Remove wafer

Plasma Clean vs. Oxygen Clean Line

RF Plasma Clean

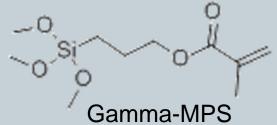

- Oxygen plasma to clean and pre-treat the substrate surface
- Plasma consists of a collection of free moving electrons and ions
- Removes impurities and contaminants from surfaces through the use of an energetic plasma

Clean Line

- Pump out lines by opening valves
- Turn on Ozone (O3) generator
- Flushes line and chamber to clean and prevent cross-contamination and ensure good film for deposition

MVD Coating with FOTS

- FOTS = fluoro octa trichloro silane
- FOTS treatment on SiO2 renders surface hydrophobic
- Water contact angle of 110°
- Proven anti-stiction coating for released MEMS



RECIPE

Pretreatement		Coating conditions	
RF Power	200 W	Partial pressure of FOTS	4 T
Oxygen	100 sccm	Partial pressure of water	0.7 T
Cleaning time	5 min	Reaction time	15 min

MVD Coating with Gamma-MPS

- Gamma-MPS = gamma-methacryloxypropyltrimethoxysilane
- Gamma-MPS treatment on SiO2 improves hydrophobicity
- Water contact angle of 60°
- Used in coatings, adhesives and sealants to provide superior adhesion and durability
- Adhesion promoter for parylene



RECIPE

Pretreatement		Coating conditions	
RF Power	200 W	Partial pressure of Gamma	0.5 T
Oxygen	80 sccm	Partial pressure of water	4 T
Cleaning time	5 min	Reaction time	15 min

FOTS Contact Angle

- Bare silicon wafers from the vendors have thin layers of native oxide
- After O2 plasma clean a thin layer of oxide of forms

20.1°

ter AMST Plasma cle 0.0º

110.2°

Unsuccessful Gamma-MPS Deposition

- 1. Performed 1 hour ozone clean on AMST
- 2. Purged Line 2 valve 10 times to flush out gas

Successful Deposition

Unsuccessful Deposition

Line 2 pressure not constant
Leak Rate of 16.1 mTorr/min

Acknowledgements

- Thank you to everyone at the Nanolab for your help and guidance, and for making this a great summer.
- Thanks to Jimmy Chang, Anna Szucs, Sia Parsa, Rosemary Spivey, and the equipment engineers.
- Special thanks to Marilyn Kushner for taking me to Semicon, for the opportunity and the experience.
- Thank you Katalin Voros for this amazing summer opportunity.
- Special thanks to Kim Chan, an incredible mentor for whom I am so grateful!