Clean Energy: Thermoelectrics and Photovoltaics

Solar Energy Use

Note: Sum of components may not equal 100 percent due to independent rounding.

Source: EIA, Renewable Energy Consumption and Electricity Preliminary 2007 Statistics, Table 1: U.S. Energy Consumption by Energy Source, 2003-2007 (May 2008).

Hydrocarbons vs. Photons

Arabian Oil: 600 years

Sun: 1.5 billion years

The Sun can Power both Solar Cells and Thermoelectrics

Voyager Powered by Thermoelectrics

Thermoelectrics 101

Seebeck Effect

L. Onsager, Physical Review 37, 405 (1931)

Thermoelectrics 101

FOR A METAL

$$S = \frac{Q}{eT} = \frac{k kT}{e E_F}$$

$$\sim 1 \, \mu \text{V/K}$$
At 300K for a typical metal

FOR A SEMICONDUCTOR

$$S = \frac{Q}{eT} = \frac{k}{e}$$

A semiconductor is like a classical gas

 \sim 100 μ V/K

Off the Shelf Thermoelectrics

COLD

$$V_{OC} = N(S\Delta T)$$

DC and AC Power-Generating Systems

DC Power

AC Power

What Governs Particle Flow?

$$dU = TdS + pdV + \mu dN + \phi de$$

$$\eta = \mu + e\phi$$

Particles move from high electrochemical potential to low electrochemical potential

Requirements for Electric Power

- 1. An Electrochemical Potential Difference Must be Present
 - 2. A Selective Barrier Must be Present

The Contact Potential

Batteries

Batteries Continued

$$V_{OC} = \Delta \mu_{anode} + \Delta \mu_{cathode}$$

Solar Cells

Solar Cells

$$V_{OC} = \Delta \mu_{electrons} + \Delta \mu_{holes}$$

Thermoelectrics as Heat Engines

Heat input consists of 3 terms: $Q_1 = \kappa \Delta T$ $Q_2 = IST_{HOT}$ $Q_3 = -\frac{1}{2}I^2R_{TE}$

Plugging into η and maximizing: $\eta = \frac{\Delta T}{T_{HOT}} \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + \frac{T_{COLD}}{T_{HOT}}}$

Heat Engines and Efficiency

Vining, C. Nature Materials 8, 83 (2009)

Figure of Merit for Thermoelectrics is ZT

Dimensionless number. Larger the better

$$ZT = \frac{S^2 \sigma}{\kappa} T$$

- **S** Thermopower
- **O** Electrical conductivity
- **K** Thermal conductivity

Is There a Ceiling to ZT?

A. Majumdar, *Science* 303, 777 2004

Is Bismuth a Good Thermoelectric?

Bulk Bismuth

Bismuth wire with diameter < 50nm

Tellurium doped Bismuth nanowires

$$m^* = .001 m_e \qquad \mu = 2.59 X 10^5 \ cm^2 \ V^{-1} \ s^{-1}$$

$$S = 100 \mu V/K \qquad \kappa = 8 \ W \ m^{-1} \ K^{-1}$$

Electron mean free path is ~30 to 50nm at room temperature

Density of States

$$S \propto T \frac{\partial N(E)}{\partial E} \Big|_{E_F}$$

ZT for Bismuth Nanowires

M.S. Dresselhaus, *Phys. Rev. B* 62, 4610 2000

Bismuth is Not an Easy Material to Work With

State of the art: Alumina assisted electrodeposition

M.S. Dresselhaus et. al., Int. Mater. Rev. 48, 45-66 2003

Bismuth is sensitive to acids and bases and oxidizes readily

S.B. Cronin et. al., Nanotechnology 13, 653-658 2002

Measurement limited to 2-point and large thermocouples

Y.M. Lin et. al., Mat. Res. Soc. Symp. Proc. 691, 377-382 2002

Bismuth Nanowire Thermoelectric Devices

Bi Nanowire Electrical Conductivity Results

A. Boukai, K. Xu, J.R. Heath, Advanced Materials 18, 864-869 2006

Heremans et. al., Phys. Rev. B 61, 2921-2930 2000

Measuring the Thermopower

Measuring the Thermoelectric Voltage (TEV)

Measuring △T

Measuring ∆T

Measuring ∆T

Measuring ∆T

Multiply:
$$\frac{V}{W} \times \frac{W}{\Omega} \times \frac{\Omega}{K}$$

Bi Nanowire Thermopower Results

A. Boukai, K. Xu, J.R. Heath, Advanced Materials 18, 864-869 2006

Surface States Dominate Carrier Transport

40nm wide Bi wire at 20K Results

Our results indicate that surface states dominate the carrier transport

Thermopower is well correlated to Mott diffusion formula

$$|\mathbf{S}| \propto \left. \frac{dN}{dE} \right|_{E_F}$$

And God Said, "Let there be Silicon and it was good."

Chemistry of Si is well understood +50 years of Silicon R&D

 κ for bulk Si is ~150 W/(m-K) @300K

With SNAP, we have control over wire width, doping, crystal orientation, etc.

Superlattice Nanowire Pattern Transfer (SNAP)

N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P.M. Petroff, J.R. Heath, Science 300, 112-115 (2003)

SNAP's Versatility

20nm

Gen VI Drive-In Doped 400 Si Wires

400 NWs

Gen VI Drive-In Doped 400 Si Wires

7.5nm

Acc.V Spot Magn Det WD Exp | 200 nm 30.0 kV 1.0 150000x SE 11.1 1 032906-Sample12-Si NWs-15 nm pitch

1400 NWs

20

061205 1400 Si Wires

Suspended Platform Allows Measurement of ZT

Measurements are Taken on an Array of Si NWs 200nm Akram Boukai, Yuri Bunimovich, Jamil Tahir-Kheli, Jen-Kan Yu, Bill Goddard and Jim Heath, *Nature*, 461, 168-171 (2008)

Si Nanowire Electrical Conductivity

Minimum Thermal Conductivity

 κ_{min} for Si ~ 1 W/(m-K) @300K This occurs when Si is amorphous

Si Nanowire Thermal Conductivity

 κ for bulk Si is ~150 W/(m-K) @300K

Diffuse vs Specular Scattering

Lots of Data to Minimize Error Bars

Our error in the temperature measurement is ~ .01%!!!

Si Nanowire Thermopower

Phonon Drag

Phonons are not in equilibrium Longitudinal modes push the electrons down the temperature gradient

Phonon Drag in Our Si NWs

Phonon Drag is Supposed to Disappear at the Nanoscale

Thank you Jamil and Bill!

L. Weber, et al. Phys. Rev. B 46, 9511 (1992)

Phonon Drag in a 1-D System

Efficient Si Nanowires

