

Synergistic Modeling & Optimization for Physical and Electrical DFM

David Z. Pan

Dept. of Electrical and Computer Engineering The University of Texas at Austin dpan@ece.utexas.edu http://www.cerc.utexas.edu/utda

Sponsored by NSF, SRC, Fujitsu, IBM, Intel, Qualcomm, Sun, KLA-Tencor

Outline

Background & Motivation

- DFM Modeling, OPC and Characterizations
 - > Design-oriented, PV-aware lithography modeling/OPC
 - Variational characterization & electrical analysis
- DFM Optimizations
 - > DFM aware routing
 - > Variation-tolerant design

Conclusions

Resolution Enhancement Techniques (RET)....

OPC: optical proximity correction; OAI: Off-axis illumination (Source: ASML) **PSM: phase shift mask**

Lithography State of the Art

Industry stuck with 193nm lithography (in the next 5 years, 45nm, 32nm, likely 22nm)

- > Push the limit of RET and immersion lithography, ...
- NGL still many challenges [SPIE'07]
 - » EUVL, E-Beam, nano-imprint...
 - » 157nm declared dead

Semiconductor News

IBM sees immersion at 22-nm, pushing

out EUV IBM plans to extend 193-nm immersion lithography down to the 22-nm node for logic production, thereby possibly pushing out EUV again.

[EE Times 2/23/07]

 Very deep sub-wavelength (VDSW) + very deep sub-micron (VDSM)

Other Manufacturing Challenges

Call for Synergistic DFM

Modeling, extraction and characterization

Insert proper metrics into the main design flow

Shape/Electrical Optimization

Outline

Background & Motivation

- DFM Modeling, OPC and Characterizations
 - > Design-oriented, PV-aware lithography simulation
 - > Variational characterization & electrical analysis
- DFM Optimizations
 - > DFM aware routing
 - Variation-tolerant design

Conclusions

Lithography Model

- To guide lithography aware physical design, *fast* yet high-fidelity lithography modeling/metrics are essential
- Process-oriented vs. Design-oriented
- Two key stages in litho-model (in a simplified view)
 - > Optical system: will generate aerial image from mask
 - Resist system: photoresist and patterning inside the wafer

Aerial Image Simulation

Hopkins image equation is generic for optical system

- > U_{l} : Image complex amplitude
- > F: mask transmission function
- > K: optical system transmission function

$$U_{I}(x_{1}, y_{1}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(x_{0}, y_{0}) K(x_{1} - x_{0}, y_{1} - y_{0}) dx_{0} dy_{0}$$

> Image intensity function for partial coherent system

$$I_{I}(x_{1}, y_{1}) = \iiint J_{0}(x_{0} - x_{0}', y_{0} - y_{0}')F(x_{0}, y_{0})F^{*}(x_{0}', y_{0}')$$

 $\times K(x_{1} - x_{0}, y_{1} - y_{0})K^{*}(x_{1} - x_{0}', y_{1} - y_{0}')dx_{0}dy_{0}dx_{0}'dy_{0}'$

Aerial Image Simulation

Directly using Hopkins equation can be extremely slow Kernel decomposition into the sum of a small number of fully coherent systems (SOCS) [Cobb 98, Mitra et al 2005]

$$I_1(x, y) = \sum_{i=0}^{P-1} |\sum_{j \in A_{(x,y)}} (F_j * K_i)(x, y)|^2$$

Fast Lookup Table Technique

Store convolution table for rectangles w.r.t the top-right reference point

- Support region is pretty small
- Design-oriented fast simulation by pattern-matching/caching

Simple Threshold Resist Model

From the aerial image => printed image (resist model) Example: simple threshold model (e.g., $0.3I_{max}$) to decide where to etch based on image intensity distribution

> And many more accurate models

Variational Lithography Modeling

The printed image is subject to process variations

- Dosage, focus, mask, …
- Lithography simulation shall be variational aware
- Extensive process-window sampling TOO SLOW

Variational Lithography Model (VLIM) [Yu et al, DAC'06]

Focus variation: defocus aerial image expansion

 $I(x,y) \cong I_0(x,y) + z^2 I_2(x,y)$

- I₀ and I₂ through kernel decomposition and table lookup
- Dosage variation: equivalent threshold variation in the threshold bias resist Model

Variational EPE

EPE under process variations

> analytical function of defocus and dosage

$$E(I_{\rm th}, z) = E_{\rm iso} + a_0(1 + a_1 z^2)(I_{\rm th} - I_{\rm th_{iso}})$$

where

$$\begin{cases} a_0 = \frac{E_{\text{target}} - E_{\text{iso}}}{I_0(E_{\text{target}}) - I_{\text{th}_{\text{iso}}}} \\ a_1 = -\frac{I_2(E_{\text{target}}) - I_2(E_{\text{iso}})}{I_0(E_{\text{target}}) - I_{\text{th}_{\text{iso}}}} \end{cases}$$

Variational EPE Example

Given certain focus and dosage variations, e.g.

$$z \sim N(\mu_z, \sigma_z^2)$$
 and $I_{\rm th} \sim N(\mu_{I_{\rm th}}, \sigma_{\rm th}^2)$

=> Analytical V-EPE metrics, e.g., first moment

$$\langle E \rangle = E_{\rm iso} + a_0 (1 + a_1 \sigma_z^2) (\mu_{I_{\rm th}} - I_{\rm th_{iso}})$$

= $E(0, I_{\rm th_{iso}}) + a_0 a_1 \sigma_z^2 (\mu_{I_{\rm th}} - I_{\rm th_{iso}})$
= $E_{\rm norm} + \mu_E$

 Concepts are generic to other "raw" distributions of focus/dosage or variational EPE metrics

Applications: PV-OPC and Beyond

- Key Idea: Derive/Extract variational EPE from "raw" variations: focus and dosage, etc.
- Run time only 2-3x compared to nominal process, but explicitly consider process variations
- Can be used to guide true PV aware OPC (PV-OPC) or litho-aware routing

POST-OPC CD MEAN AND EPE VARIANCE COMPARISON.

	average CD mean (nm)		average EPE variance (nm)	
	Conventional	PV-OPC	Conventional	PV-OPC
PMOS	61.44	65.22	3.39	3.29
NMOS	61.09	64.35	3.50	3.41

US Patent Pending (supported by SRC)

[Yu et al, DAC'06]

Geometry => Electrical

 Electrical characterizations of a 65nm inverter
 PV-OPC is able to meet design intent under process variations

Variational Electrical Analysis

- Layout-dependent non-rectangular gate characterization [Shi+, ICCAD'06]
- => more accurate static/statistical circuit analysis
- A novel sparse-matrix formulation for SSTA [Ramalingam+, ICCAD'06]
 - Model path-based SSTA using sparse matrix multiplication (fast Monte-Carlo in one-short)
 - > Handle arbitrary correlations
 - > Handle slope propagation
 - > Very accurate and fast!
 - > Can use block-based SSTA for path-pruning

• Path delays can be written in $\mathbf{p} = \mathbf{A} \mathbf{d}$.

Delay Modeling

By linear regression, express gate delay as a polynomial in:

- > Operating environment, e.g., C_{Load}
- Technology variables, e.g. L, V_T
- Linear regression (≠ Linear models), e.g.:

Collect all regression terms into one vector z
 d = c^T z

Gate delay Vector

- Delay for gate k: d_k = c_k^T z_k
 - d_{c1} denotes the delay from gate c's pin 1 to o/p
- Expanding for all gates/arcs:

♦ => d = C z

f

d

е

Path Delays using Monte-Carlo

Equation for all path delays given by:

> p = A d = A C z

- Values of z determined by technology settings such as V_T, L, V_{DD} etc.
 - Given an arbitrary distribution of z, we can generate n samples Z = [z₁ ... z_n]
- Path delays corresponding to these n samples:
 - > $[p_1 ... p_n] = A C [z_1 ... z_n]$
- Fast Monte-Carlo SSTA in sparse-matrix form:
 P = A C Z
- Handle slope propagation nicely (a new C' matrix)
- Method implemented/used by industry.

Outline

Background & Motivation

- DFM Modeling, OPC and Characterizations
 - > Design-oriented, PV-aware lithography simulation
 - Variational characterization & electrical analysis
- DFM Optimizations
 - > DFM aware routing
 - > Variation-tolerant design
- Conclusions

Routing in VLSI Physical Design

Yield Loss Mechanisms

Which Stage to Tackle What?

- CMP variation optimization
 - > Minimum effective window (20x20µm²) and global effect
 - > Global routing plans approximate routing density
- Critical area optimization
 - > Adjacent parallel wires contribute majority of critical area.
 - > Track router has good flexibility with wire ordering/spacing/sizing.
- Lithography optimization
 - > Effective windows $(1-2\mu m^2)$ are small
 - > Detailed router performs localized connection between pins/wires.

Litho-Aware Routing

- More & more metal layers need RETs
- Rule vs. model based approach
- Rules -
 - > Exploding number of rules
 - Very complicated rules
 - > Too conservative or not accurate rules
 - No smooth tradeoffs (either follow or break rules)

How about directly link litho-models with routing?

- > Lithography simulations could be extremely slow !
- > A full-chip OPC could take a week
- Accuracy vs. Fidelity (Elmore-like)
- > Design-oriented vs. process-oriented

RET-Aware Detailed Routing (RADAR) [Mitra et al, DAC'05]

- First work to truly link lithography modeling with design implementation level
- Introduce the concept of Litho- Hotspot Maps
- Fast lithography simulation to generate LHM
 - > Guided by our design-oriented fast litho simulations
- Post-routing optimizations to reduce hotspots
 - > Wire spreading
 - Ripup-Reroute (RR) with blockages (protect "good" regions)

RET-aware Routing on a 65nm Design

Initial routing (after design closure)

40% EPE reduction (much less litho hot spots)

[Mitra et al, DAC'05]

More on Litho-Aware Routing

- Lithography hotspot is a generic concept
- Other metrics may be used: Not just EPE
 - Possibly under process variations, such as variational EPE (V-EPE) metric [Yu+, DAC'06]
 - > Other Predictive OPC modeling [SPIE'07]
- We are developing a new correct-by-construction litho-aware router

CMP-Aware Routing

Lithography interact with CMP

- > CMP => defocus
- CMP-Aware Routing
 - Need scalable yet high-fidelity CMP model
 - > Best attacked at the **global** routing stage

Wire Density Driven Paradigm [Cho et al, ICCAD'06]

- In general, more uniform wire density
 - > Better CMP topography variations
- Wire density will affect timing too
 - Lower wire density => less resistance (higher thickness)
 - Lower wire density => less capacitance
- Wire density: a unified metric for CMP and Timing optimization (one stone, two birds!)
- Wire density vs. congestion driven GR
 - > Though correlated, indeed different during global routing
 - > Density: wires inside global routing cells
 - Congestion: wires crossing the boundaries of global routing cells

BoxRouter [DAC'06, ICCAD'07]

Incremental Box Expansion

- From most congested regions
- Progressive ILP
- Adaptive maze routing
- PostRouting
 - Negotiation-based approach
- DAC'06 BPA Candidate
- 2nd place (in 3D) ISPD07 Routing Contest
- US Patent filed by SRC
- Open Source Released

Predictive Copper CMP Model

Verified by physics-based simulations

Predictive Copper CMP Model

Global Routing Flow With Predictive CMP Model

- Predictive CMP Model guides global router
 - More uniform wire distribution
 - Consider metal blockages (power/ground rail, IPs)

Experimental Results

□ BoxRouter ■ Wire density

- On average 7.5% reduction
- Up to 10.1% reduction

- On average 7% reduction
- Up to 10% reduction

[Cho et al, ICCAD'06]

Critical Area For Yield

Critical area due to open defect

- > Reduce defect size
- > Increase wire width

Critical area due to short defect

- > Reduce defect size
- > Increase wire spacing
- Random defect can cause open/short defect
 - > Wire planning for critical area reduction
- Defect size distribution
 - > Chance of getting larger defect decreases rapidly [TCAD85]
- Concurrent optimization for open/short defect
 - > Larger wire width for open, but larger spacing for short defect
 - > Limited chip area

Track Routing for Yield (TROY) [Cho et al, DAC'07]

TROY is the first yield-driven track router

- Wire ordering to minimize overlapped wirelength between neighbors
 - » Preference-aware Minimum Hamiltonian Path
- > Wire sizing/spacing to minimize critical areas
 - » Second-order conic programming (SOCP)
 - » global optimal in nearly linear time
- Result is very promising
 - > 18% reduction in yield loss due to random defects
 - > TROY is very scalable

Math 101 for Critical Area

- POFs for open/shorts are convex functions
 - > Global optimal can be found, but *POF* is complicated.
 - > Approximated POF is also convex, but easy enough to enable SOCP.

TROY Brute-forth Formulation

$$\begin{array}{lll} \min: & \alpha \sum_{i} (POF_{i}^{o} + POF_{i}^{o*}) + (1 - \alpha) \sum_{i,j > i} POF_{ij}^{s} & \begin{array}{c} POF \mbox{ for short} \\ \mbox{ s.t:} & |p_{i} - M_{i}| \leq d_{i} & \forall i \\ \end{array}$$

- Extremely hard to solve >
- Integer variable for the wire order o_{ii} (above/below relationship) >

locations

TROY Strategy

SOCP: Global optimal solution in nearly linear time

TROY Results

- Monte-Carlo simulation with 10K defects
- On average 18 % reduction in yield loss, up to 30%
- Discretization only loses 2%

DFM-Aware Routing Wrap-up

The reality is of course, MORE COMPLICATED

 Need to consider the interactions between CMP, Litho, RV, CAA, etc.

Variation-Tolerant Clock Synthesis

- Variation reduction => variation tolerance
- Temperature aware clock opt. [ICCAD'05]
- Clock tree link insertion [Rajaram+, ISPD'05, ISQED'06, ISPD'06, ISQED'07]
- Meshworks: clock mesh planning/synthesis [ASPDAC 2008, BPA nominee]

CTS -> add links

Mesh -> remove links?

Conclusions

- 193nm lithography will still be the dominant chip manufacturing workhorse, for next 5+ years
 - > Even EUV still has DFM problems
- Synergistic modeling & optimization needed in a unified framework => Design + Mfg Closure
 - > DFM in context of DSM
- Current works just scratch the surface
- Need much closer collaborations than ever
 - > Between academia and industry (e.g., SRC, IMPACT)
 - > Between different camps: design, CAD, process, and system!

Acknowledgment

- Sponsorship by NSF, SRC (core + custom funding from AMD/Cadence/Freescale), IBM, Fujitsu, Qualcomm, Sun, Intel and KLA-Tencor
- PhD students at UTDA: Minsik Cho, Joydeep Mitra, Anand Rajaram, Anand Ramalingam, Sean X. Shi, Peng Yu
- Collaborations/discussions with Dr. Chris Mack, Dr. Ruchir Puri, Dr. Hua Xiang, Dr. Warren Grobman, Dr. Vassilios Gerousis, Dr. Riko Radojcic, et al.