Resistive RAM: Technology and Market Opportunities

⊷∭

Deepak C. Sekar MonolithIC 3D Inc.

RRAMs/Memristors have excited many people...

IEEE Spectum:

"The greatest electronics invention of the last 25 years"

Time Magazine:

"One of the best inventions of 2008"

This presentation:

- Explains RRAM Technology and Applications
- Are IEEE Spectrum and Time right to be excited? After this talk, you judge!

Outline

- Introduction
- Mechanism
- Switching Optimization
- Array Architectures and Commercial Potential
- Risks and Challenges
- Conclusions

Outline

• Introduction

Device Structure

Тор		Examples
electrode	Top electrode	Pt, TiN/Ti, TiN, Ru, Ni.
ansition al Oxide	Transition Metal	TiO _x , NiO _x , HfO _x , WO _x ,
	Oxide	TaO_{x} , VO_{x} , CuO_{x} ,
	Bottom Electrode	TiN, TaN, W, Pt,

- Many types of RRAM exist
- Transition Metal Oxide RRAM (above) seems most popular \rightarrow focus of this talk

RRAM compared with other switching materials

Single cell @ 45nm node	Phase Change Memory	STT-MRAM	RRAM
Materials	TiN/GeSbTe/Ti N	Ta/PtMn/CoFe/Ru/CoFeB/ MgO/CoFeB/Ta	TiN/Ti/HfO _x /TiN
Write Power	300uW	60uW	50uW
Switching Time	100ns	4ns	5ns
Endurance	10 ¹²	>10 ¹⁴	10 ⁶ , 10 ¹⁰ reported in IEDM 2010 abstract
Retention	10 years, 85°C	10 years, 85°C	10 years, 85°C

Ref: PCM - Numonyx @ IEDM'09, MRAM: Literature from 2008-2010, RRAM - ITRI @ IEDM 2008, 2009

Simple materials, low switching power, high-speed, endurance, retention:

RRAM could have them all. One key reason for the excitement...

RRAM in the research community

7

Industry players developing transition metal oxide RRAM

The periodic table \rightarrow a playground for RRAM developers

Which materials switch better? Can hopefully answer at the end of this talk...

Outline

• Mechanism

RRAM Switching

- FORM: Very Hi Z \rightarrow Lo Z. Highest Voltage, Done just once at the beginning.
- <u>RESET</u>: Lo Z \rightarrow Hi Z, <u>SET</u>: Hi Z \rightarrow Lo Z

Switching Mechanism

• RRAM switching mechanism not yet fully understood

- In next few slides, will present best understanding so far (with evidence) for
- 1) FORM
- 2) RESET
- 3) SET

for oxygen ion conduction RRAMs

Understanding FORM

A FRANKE (CORIW)

On applying forming voltage, @Cathode: $TiO_2 + 2xe^- \rightarrow TiO_{2-x} + xO^{2-1}$ @Anode: $2O^{2-1} \rightarrow O_2 + 4e^{-1}$

Background information:

- Ti, a transition metal, exists as TiO₂, Ti₄O₇, Ti₅O₉, Ti₂O₃, TiO. Multiple oxidation states \rightarrow +2, +3, +4, etc
- Transition metal oxides good ionic conductors. Used in fuel cells for that reason.
 <u>Two key phenomena → next few slides give evidence:</u>
- Oxygen formed at the anode
- Conductive filament with oxygen vacancies from cathode

Evidence for oxygen at anode

60 n n

@Anode: $2O^2 \rightarrow O_2 + 4e^-$

Click to view

Some small permanent

deformations remain

Evidence for conducting filament of oxygen vacancies (1/2)

Fully-formed filament

Partially-formed filament

- Filament observed in TEM after forming
- Starts at cathode, many filaments present, most are partial filaments. Filament wider on cathode side.
- Electron diffraction studies + other experiments reveal filaments are Magneli phase compounds (Ti₄O₇ or Ti₅O₉, essentially TiO_{2-x}). These Magneli phase compounds conductive at room temperatures.

Why should a filament of oxygen vacancies conduct?

A: Conduction by electron hopping from one oxygen vacancy to another.

Curves fit Mott's electron hopping theory

Understanding RESET

Phenomenon 1: Filament breaks close to Top Electrode - MeO_x interface

Bipolar mode:

@Virtual Anode: $TiO_{2-x} + xO^{2-}$ → $TiO_2 + 2xe^{-}$

Heat-assisted electrochemical reaction, since 25uA reset current thro' 3nm filament \rightarrow Current density of 3x10⁸ A/cm²... High temperatures!!!!

Unipolar mode:

Solely heat driven

Understanding RESET

Phenomenon 2:

Filament breaks \rightarrow Schottky barrier height at interface changes \rightarrow Big change in resistance

18

Understanding SET

SET similar to FORM, but filament length to be bridged shorter \rightarrow Lower voltages

Evidence for oxidation state change during switching

(a) Raman spectrum at (1) before switching and (2) before and after switching

- (b) Raman spectrum at (1) after switching
- ightarrow Switching occurs at interface (1) and involves oxidation state change

Evidence for switching at Top Electrode/MeO_x interface

- SET voltage between pad 2 and pad 4 (denoted 2-4).
- Then, pad 4 broken into two. One broken part (denoted 2-4₁) had nearly the same I-V curve as previously! The other (denoted 2-4₂) OFF, almost ideal rectifier
 - \rightarrow Filamentary conduction, and interface between Pt/TiO₂ switching.

To summarize today's understanding of RRAM,

Filamentary switching with oxygen vacancies.

Barrier height at Top electrode/MeO_x interface plays a key role in ON/OFF I-V curves.

Outline

• Switching Optimization

Techniques to optimize RRAM switching

• Optimized Top Electrode

• Optimized Transition Metal Oxide

• Control of Cell Current during SET

Techniques to optimize RRAM switching

• Optimized Top Electrode

Based on switching model, RRAM's top electrode needs

Pt \rightarrow excellent oxidation resistance, high work function \rightarrow used in RRAMs. But not fab-friendly \otimes

Top electrode candidates for RRAM

pMOS gate in high k/metal gate logic transistors \rightarrow high work function, good oxidation resistance \rightarrow Can use those electrodes (eg. TiAIN) for RRAM as well.

Ref: [1] Z. Wei, et al., IEDM'08 [2] D. Sekar, et al., US Patent Applications 20100117069/20100117053, filed Feb.'09, published by USPTO '10.7

Techniques to optimize RRAM switching

• Optimized Transition Metal Oxide

Based on switching model, RRAM's Metal Oxide Material needs

Work reliably at high temperatures encountered during RRAM operation

Multiple materials fit these criteria, and many drop off our candidate list due to these too...

Ref: D. Sekar, et al., US Patent Applications 20100117069/20100117053, filed Feb. '09, published by USPTO '10.

Stabilized Zirconium Oxide: a good candidate for RRAM

SOFC FUEL CELL	RRAM need	Stabilized ZrO _x properties	Comment
Fuel In e- Air In	High Ionic conductivity	40S/cm @ 800ºC	One of the highest known, Fluorite structure
	Multiple stable oxidation states	Stable +2, +3, +4 oxidation states	
Excess Fuel and u d Gases	Fab-friendliness	Well-known material	Due to high k work
Water H20 Out	Low electron affinity	Low, ~2.4eV	TiO _x and TaO _x RRAM have 3.9eV and 3.3eV
Anode Electrolyte	Withstand high T reliably	Yes	Fuel cells operate at 800°C for long times, reliable
Oxide with Y doping			

Hafnium oxide similar to Zirconium Oxide, has many of these advantages. Also used for fuel cells.

Ref: D. Sekar, et al., US Patent Applications 20100117069/20100117053, filed Feb. '09, published by USPTO '10.

Techniques to optimize RRAM switching

• Control of Cell Current during SET

RESET Current determined by SET Current Compliance

- Fatter filament if higher SET current \rightarrow Harder to break \rightarrow Higher RESET current
- Careful transient current control for SET important, for both RRAM device development and array architecture. Keep parasitic capacitances in your test setup in mind while measuring!!!!!

Ref: [1] Y. Sato, et al., TED 2008, [2] F. Nardi, et al, IMW 2010.

Outline

• Array Architectures and Commercial Potential

RRAM Device Specs from the Literature

	ITRI, IEDM 2008	NEC, VLSI 2010	Panasonic, IEDM 2008	Univ. + IMEC, IMW 2010	Fujitsu, IEDM 2007
Device	Tin/Ti/Hfo _x /Tin	Ru/TiO _x /TaO _x /Ru	Pt/TaO _x /Pt	Au/NiO _x /TiN	Pt/Ti-doped NiO/Pt
Test chip	1T-1R	1T-1R	1T-1R	1T-1R	1T-1R
Polarity	Bipolar	Unipolar	Bipolar	Unipolar	Unipolar
Reset	2V, 25uA	0.65V, 200uA	1.5V, 100uA	0.5V DC, 9.5uA	1.9V, 100uA
Set	2.3V	2.8V	2V	2.7V DC	2.8V
Form Voltage	3V	?	?	3.7V DC	3V
Switching Time	<10ns	<1us	<100ns	NA	10ns
On/off ratio	~100x	100x	10x	5x-10x	90x
Endurance, Data Retention	10 ⁶ , 10 years	10 ⁵ , 10 years	10 ⁹ , 10 years	130 cycles, ?	100, 10 years
Comments	Typical data	Worst case data	Typical data	Typical data	Typical

For these device specs, what kind of selectors and array architectures work well?

Potential Array Architectures

• 1T-1R

• 3D Stacked 1D-1R

• 3D Stacked 1T-manyR

• 3D Stacked 1T-1R

1T-1R Array Architecture

<u>1T-1R viable for embedded NVM,</u> <u>code storage if forming-free</u> USPs: Easily embeddable device, low switching energy

- Easy to embed into a logic process
 - \rightarrow ~3 extra masks vs. ~8 extra masks for flash
 - \rightarrow Lower voltages vs. flash

Key issues:

- Need forming-free operation:
 - For 3V forming, standard MOSFET probably cannot scale below 130nm L_{eff}.
- If forming-free and SET/RESET voltage < 1-1.5V, density = 6F² – 8F². Then, good for embedded NVM and code storage applications.

Array Demonstrations of 1T-1R RRAM

3D Stacked 1D-1R Architectures

USP: Dense. Targets data and code storage markets.

- pn diodes → unipolar, or
 Punch-Through Diode, Ovonic Threshold Switch (OTS), others → bipolar
- 6 levels of memory \rightarrow 4F²/6 = 0.66F². Very dense!!!

Key issues:

- 6 layers → 12 critical masks if 2 masks per layer. Cost competitive with NAND flash (4 critical masks)?
- Compete with NAND performance and power? 3D diode selectors not as good as transistor selectors.

Ref: [1] E. Harari, SanDisk Investor Day, Aug. 2008 [2] D. Kau, et al., IEDM 2009 [3] A. Mihnea, D. Sekar, et al., US Patent Appln. 12/582,509 [4] W. Parkison, US Patent Appln. 20090207645 [5] S. Lai, IEDM 2008

3D Stacked 1T-manyR Architecture

USP: Dense + Low number of litho steps. Targets code and data storage markets.

- Advantages of transistor selectors, but higher density than 1T-1R → More suited for storage.
- Low number of lithography steps

Key Issues:

- Sneak leakage. Reach high array efficiency and NAND-like cost per bit?
- Performance and power consumption competitive with NAND flash?

3D Stacked 1T-1R Architecture

USP: Dense + Low number of litho steps + Excellent selector. Targets code and data storage markets.

- c-Si Junction-Less Transistor selector with ion-cut (JLT ok for this appln).
- No sneak leakage, so excellent performance/power.
- Shared litho steps

Key Issues:

 Ion-cut cost might need some optimization to get to \$60 per layer

Market Opportunities

Data Storage

Market (2010):\$22BApplications:Cell-phones, tablets, computersUSP vs. incumbent:Endurance, Performance

3D Stacked 1T-1R, 3D Stacked 1D-1R, 3D Stacked 1T-manyR

Code Storage

Market (2010): \$5.5B Applications: Computers, Cellphones USP vs. incumbent: Density, Scalability

3D Stacked 1D-1R, 1T-1R,

3D Stacked 1T-manyR, 3D Stacked 1T-1R

Embedded NVM

Market (2010): \$4.5B Applications: Microcontrollers, FPGAs, others USP vs. incumbent: Easy to embed

1T-1R

Intellectual Property

Late 1960s-early 1970s: Forming, filamentary model, switching summary of 10 different transition MeO_x where Me is Ti, Ta, Zr, V, Ni, etc

Electrical phenomena in amorphous oxide films

G. DEARNALEY,† A. M. STONEHAM,† and D. V. MORGAN‡

- Patents, if any, on *basic switching concepts,* have expired ③.
- Good patents on more advanced concepts exist (eg) Pt-replacement approaches, array architectures, doping, etc. Can engineer around many of these.
- IP scenario for RRAM a key advantage. Other resistive memories have gate-keepers (eg) Basic patents on PCM, CB-RAM, STT-MRAM from Ovonyx, Axon Technologies, Grandis.

Outline

• Risks and Challenges

Risks and Challenges

Business risk:

Competing with *high-volume* flash memory technologies.

Technology risks:

- RESET current scaling a function of current compliance, not device area.
 How low can it go with acceptable retention?
- Array architecture
- Forming

Outline

• Conclusions

Conclusions

Тор
electrode
Transition
Metal Oxide
Bottom
electrode

- Simple materials. Excellent switching + good retention possible.
- <u>Mechanism</u>: Oxygen vacancy filaments
- Many techniques to optimize switching such as materials engg. of top electrode and RRAM, transient current control
 - Markets:
 - Data storage (\$22B) \rightarrow 3D stacked 1T-1R, 1D-1R and 1T-manyR
 - Code storage (\$5.5B) \rightarrow 3D stacked architectures, 1T-1R
 - Embedded NVM (\$4.5B) \rightarrow 1T-1R attractive if no forming

My take:

Exciting and interesting technology. But will RRAM change the world? Too early to say...

PS:

What's all this "Memristor" stuff the press is

going gaga about?

Analogy: The RRAM as a Memristor

Thank you for your attention!

Backup Slides

Doping elements with +3 oxidation state into metal oxides with +4 oxidation state

Impact of interface layers

- Ti interface layer in HfO₂ RRAM.
- Ti \rightarrow getters oxygen \rightarrow vacancies in HfO₂. Forms TiN/TiO_x/HfO_{1.4}/TiN device.
- Vacancies \rightarrow reduce forming voltage and improve switching yield.

Some of the best switching characteristics reported to date for RRAM.

Ref: H. Y. Lee, et al., IEDM 2008