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RRAMs/Memristors have excited many people…

IEEE Spectum:

“The greatest electronics invention of the last 25 years”

Time Magazine:

“One of the best inventions of 2008”

This presentation: 

• Explains RRAM Technology and Applications

• Are IEEE Spectrum and Time right to be excited?                

After this talk, you judge!  
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Device Structure

• Many types of RRAM exist 

• Transition Metal Oxide RRAM (above) seems most popular  focus of this talk
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Top                
electrode

Bottom 
electrode

Transition 
Metal Oxide

Examples

Top electrode Pt, TiN/Ti, TiN, Ru, Ni …

Transition Metal 
Oxide

TiOx , NiOx , HfOx , WOx , 
TaOx , VOx , CuOx , …

Bottom Electrode TiN, TaN, W, Pt, …



RRAM compared with other switching materials

Simple materials, low switching power, high-speed, endurance, retention: 

RRAM could have them all. One key reason for the excitement…
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Single cell @ 
45nm node

Phase Change 
Memory

STT-MRAM RRAM

Materials TiN/GeSbTe/Ti 
N

Ta/PtMn/CoFe/Ru/CoFeB/ 
MgO/CoFeB/Ta

TiN/Ti/HfOx /TiN

Write Power 300uW 60uW 50uW
Switching 
Time

100ns 4ns 5ns

Endurance 1012 >1014 106, 1010 reported in IEDM 
2010 abstract

Retention 10 years, 85oC 10 years, 85oC 10 years, 85oC
Ref: PCM – Numonyx @ IEDM’09, MRAM: Literature from 2008-2010, RRAM – ITRI @ IEDM 2008, 2009  



RRAM in the research community

Steadily increasing interest
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Industry players developing transition metal oxide RRAM 
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Japan
Sharp - TiON
Fujitsu – NiOx
NEC - TaOx
Panasonic – 
TaOx

Korea
Samsung - NiOx
Hynix - TiOx

China
SMIC - 
CuSiOx

Taiwan
Macronix - WOx
TSMC – TiON
ITRI - HfOx

Based on published data and publicly available info

EU
IMEC - NiOx

US
HP – TiOx
Spansion – CuOx
IBM - SrTiOx

+ other companies which do not publish



The periodic table  a playground for RRAM developers
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Which materials switch better? Can hopefully answer at the end of this talk…

Published Dielectric material

Published Electrode material
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RRAM Switching
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Unipolar switching:
All operations same polarity

Bipolar switching:
RESET opposite polarity to SET and FORM

• FORM: Very Hi Z  Lo Z. Highest Voltage, Done just once at the beginning.

• RESET: Lo Z  Hi Z,   SET: Hi Z  Lo Z



Switching Mechanism

• RRAM switching mechanism not yet fully understood

• In next few slides, will present best understanding so far (with evidence) for

1) FORM

2) RESET

3) SET 

for oxygen ion conduction RRAMs

12



Understanding FORM

Background information:

• Ti, a transition metal, exists as TiO2 , Ti4 O7 , Ti5 O9 , Ti2 O3 , TiO. Multiple oxidation states  +2, +3, +4, etc

• Transition metal oxides good ionic conductors. Used in fuel cells for that reason.

Two key phenomena  next few slides give evidence:

• Oxygen formed at the anode

• Conductive filament with oxygen vacancies from cathode
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On applying forming voltage,

@Cathode: TiO2 + 2xe-  TiO2-x + xO2-

@Anode:    2O2-  O2 + 4e-

DURING FORM

CATH

 
ODE

ANOD

 
ESOLID
ELECTR

 
OLYTE

Oxygen     
vacancies

TiO2

PtPt

TiN

+

O2-
O2 On applying forming voltage,

@Cathode: TiO2 + 2xe-  TiO2-x + xO2-

@Anode:    2O2-  O2 + 4e-

AFTER FORM

CATH
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ANOD

 
ESOLID
ELECTR

 
OLYTE

Oxygen     
vacancies

TiO2

PtPt

TiN

-

+ BEFORE FORM

TiO2

PtPt
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Ref: [1] G. Dearnaley, et al., 1970 Rep. Prog. Phys. [2]  S. Muraoka, et al., IEDM 2007, [3]  J. Yang, et al., Nature Nanotechnology, 2008. 



Evidence for oxygen at anode
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On applying forming voltage,

@Cathode: TiO2 + 2xe-  TiO2-x + xO2-

@Anode:    2O2-  O2 + 4e-

DURING FORM

AFM image 
detecting 
oxygen 
bubbles for 
big devices

CATH

 
ODE

ANOD

 
ESOLID
ELECTR

 
OLYTE

Oxygen     
vacancies

TiO2

PtPt

TiN

-

+

O2-

O2

Ref: J. Yang, et al., Nature Nanotechnology, 
2008. 

Click to view



Evidence for conducting filament of oxygen vacancies (1/2)

• Filament observed in TEM after forming

• Starts at cathode, many filaments present, most are partial filaments. Filament wider on cathode side.

• Electron diffraction studies + other experiments reveal filaments are Magneli phase compounds (Ti4 O7 or 
Ti5 O9 , essentially TiO2-x ). These Magneli phase  compounds conductive at room temperatures. 

15Ref: D-H. Kwon, et al., Nature Nanotechnology, 2010. 
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Evidence for conducting filament of oxygen vacancies (2/2)

Why should a filament of oxygen vacancies conduct?              

A: Conduction by electron hopping from one oxygen vacancy to another.
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Curves fit Mott’s electron hopping theory

MeOx

PtPt

TiN

Ref: N. Xu, et al., Symp. on VLSI Technology, 2008. 



Understanding RESET

Phenomenon 1: Filament breaks close to Top Electrode - MeOx interface
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Bipolar mode:

@Virtual Anode: TiO2-x + xO2-  TiO2 + 2xe-

Heat-assisted electrochemical reaction, since 

25uA reset current thro’ 3nm filament  Current 

density of 3x108 A/cm2… High temperatures!!!!

Unipolar mode: 

Solely heat driven

Virtual 
anode

TiO2

PtPt

TiN

+

-

ANOD

 
E

CATH

 
ODESOLID
ELECTR

 
OLYTE

Ref: [1]  S. Muraoka, et al., IEDM 2007, [2]  J. Yang, et al., Nature Nanotechnology, 2008. 



Understanding RESET

Phenomenon 2: 

Filament breaks  Schottky barrier height at interface changes  Big change in resistance
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Effective Barrier height 
increases when TiO2-x 
converted to TiO2

Metal Oxide

Oxygen vacancies @ interface                            
reduce effective barrier height. 

Similar theory to Fermi level pinning in CMOS 
high k/metal gate.

Virtual 
anode

TiO2

PtPt

TiN

+

-

ANOD

 
E

CATH

 
ODESOLID
ELECTR

 
OLYTE Pt

Ref: [1]  S. Muraoka, et al., IEDM 2007, [2]  J. Yang, et al., Nature Nanotechnology, 2008, [3] J. Robertson, et al., APL 2007. 



Understanding SET

SET similar to FORM, but filament length to be bridged shorter  Lower voltages
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On applying set voltage,

@Cathode: TiO2 + 2xe-  TiO2-x + xO2-

@Anode:    2O2-  O2 + 4e-

Cell before SET

TiO2

PtPt

TiN

Oxygen     
vacancies
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TiN

-

+
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ELECTR
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Ref: [1]  S. Muraoka, et al., IEDM 2007, [2]  J. Yang, et al., Nature Nanotechnology, 2008. 



Evidence for oxidation state change during switching

(a) Raman spectrum at (1) before switching and (2) before and after switching

(b) Raman spectrum at (1) after switching

 Switching occurs at interface (1) and involves oxidation state change

20Ref: S. Muraoka, et al., IEDM 2007. 



Evidence for switching at Top Electrode/MeOx interface

• SET voltage between pad 2 and pad 4 (denoted 2-4). 

• Then, pad 4 broken into two. One broken part (denoted 2-41 ) had nearly the same I-V curve as 
previously! The other (denoted 2-42 ) OFF, almost ideal rectifier                                   


 

Filamentary conduction, and interface  between Pt/TiO2 switching.

21Ref: J. Yang, et al., Nature Nanotechnology, 2008. 



To summarize today’s understanding of RRAM,

Filamentary switching with oxygen vacancies.

Barrier height at Top electrode/MeOx interface plays a key role in ON/OFF I-V curves.
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Before FORM After FORM After RESET After SET

TiO2 + 2xe-  TiO2-x + xO2- TiO2 + 2xe- 

 TiO2-x + xO2-
TiO2-x + xO2- 

 TiO2 + 2xe-

TiO2

PtPt

TiN

TiO2

PtPt

TiN

TiO2

PtPt

TiN

TiO2

PtPt

TiN
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Techniques to optimize RRAM switching

• Optimized Top Electrode

• Optimized Transition Metal Oxide

• Control of Cell Current during SET
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Based on switching model, RRAM’s top electrode needs

Pt  excellent oxidation resistance, high work function  used in RRAMs. But not fab-friendly 
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Excellent oxidation 

resistance  even 

for high T and 

oxygen rich 

ambients

Fab-friendly material

Ref: Z. Wei, et al., IEDM 2008 

High work function 

 High Schottky 

barrier height            

 Lower current 

levels



Top electrode candidates for RRAM

By definition, higher electrode potential  

 More difficult to oxidize
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Best switching seen when both electrode potential 

and work function are high

pMOS gate in high k/metal gate logic transistors  high work function, good oxidation resistance 

 Can use those electrodes (eg. TiAlN) for RRAM as well. 

Ref: [1] Z. Wei, et al., IEDM’08  [2] D. Sekar, et al., US Patent Applications 20100117069/20100117053 , filed Feb.‘09, published by USPTO ’10. 



Techniques to optimize RRAM switching

• Optimized Top Electrode

• Optimized Transition Metal Oxide

• Control of Cell Current during SET
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Based on switching model, RRAM’s Metal Oxide Material needs

High ionic conductivity  helps ions 

move at lower fields and temperature
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Multiple stable oxidation states, low 

energy needed for conversion

Simple fab- 

friendly material 

(Key)

Work reliably at high temperatures encountered during RRAM operation

Multiple materials fit these criteria, and many drop off our candidate list due to these too…

Ref: D. Sekar, et al., US Patent Applications 20100117069/20100117053 , filed Feb.‘09, published by USPTO ’10. 

Low electron affinity              

 High Schottky barrier 

height  Lower current 

levels. Can possibly 

avoid use of Pt.



Stabilized Zirconium Oxide: a good candidate for RRAM

Hafnium oxide similar to Zirconium Oxide, has many of these advantages. Also used for fuel cells.
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Electrolyte                     
typically Zirconium 

Oxide with Y doping

RRAM need Stabilized ZrOx 
properties

Comment

High Ionic 
conductivity

40S/cm @ 800oC One of the highest known, 
Fluorite structure

Multiple stable 
oxidation states

Stable +2, +3, +4 
oxidation states

Fab-friendliness Well-known material Due to high k work

Low electron 
affinity

Low, ~2.4eV TiOx and TaOx RRAM have 
3.9eV and 3.3eV

Withstand high 
T reliably

Yes Fuel cells operate at 800oC for 
long times, reliable

Ref: D. Sekar, et al., US Patent Applications 20100117069/20100117053 , filed Feb.‘09, published by USPTO ’10. 



Techniques to optimize RRAM switching

• Optimized Top Electrode

• Optimized Transition Metal Oxide

• Control of Cell Current during SET
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RESET Current determined by SET Current Compliance

• Fatter filament if higher SET current  Harder to break  Higher RESET current

• Careful transient current control for SET important, for both RRAM device development and array 
architecture. Keep parasitic capacitances in your test setup in mind while measuring!!!!!
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Filament size 
determined by SET 
current compliance

Ref: [1] Y. Sato, et al., TED 2008, [2]  F. Nardi, et al, IMW 2010. 
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RRAM Device Specs from the Literature

For these device specs, what kind of selectors and array architectures work well?
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ITRI,                  
IEDM 2008

NEC,                 
VLSI 2010

Panasonic,
IEDM 2008

Univ. + IMEC, 
IMW 2010

Fujitsu,                     
IEDM 2007

Device TiN/Ti/HfOx /TiN Ru/TiOx /TaOx /Ru Pt/TaOx /Pt Au/NiOx /TiN Pt/Ti-doped 
NiO/Pt

Test chip 1T-1R 1T-1R 1T-1R 1T-1R 1T-1R
Polarity Bipolar Unipolar Bipolar Unipolar Unipolar
Reset 2V, 25uA 0.65V, 200uA 1.5V, 100uA 0.5V DC, 9.5uA 1.9V, 100uA
Set 2.3V 2.8V 2V 2.7V DC 2.8V
Form Voltage 3V ? ? 3.7V DC 3V
Switching Time <10ns <1us <100ns NA 10ns
On/off ratio ~100x 100x 10x 5x-10x 90x
Endurance, 
Data Retention

106, 10 years 105, 10 years 109, 10 years 130 cycles, ? 100, 10 years

Comments Typical data Worst case data Typical data Typical data Typical



Potential Array Architectures

• 1T-1R

• 3D Stacked 1D-1R

• 3D Stacked 1T-manyR

• 3D Stacked 1T-1R 
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1T-1R Array Architecture

• Easy to embed into a logic process                            
 ~3 extra masks vs. ~8 extra masks for flash

 Lower voltages vs. flash

Key issues:

• Need forming-free operation:

For 3V forming, standard MOSFET probably 
cannot scale below 130nm Leff .

• If forming-free and SET/RESET voltage < 1-1.5V, 
density = 6F2 – 8F2. Then, good for embedded 
NVM and code storage applications.

36

1T-1R viable for embedded NVM, 
code storage if forming-free

USPs: Easily embeddable device,           
low switching energy



Array Demonstrations of 1T-1R RRAM
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Pt/TaOx /Pt
8kb bipolar array
Panasonic, IEDM 2008

Ru/TiOx /TaOx /Ru
1kb unipolar array
NEC, VLSI 2010

TaN/CuSix Oy /Cu
1Mb bipolar array
SMIC, VLSI 2010



3D Stacked 1D-1R Architectures

• pn diodes  unipolar, or

Punch-Through Diode, Ovonic Threshold Switch 

(OTS), others  bipolar

• 6 levels of memory  4F2/6 = 0.66F2. Very dense!!!

Key issues:

• 6 layers  12 critical masks if 2 masks per layer. Cost 

competitive with NAND flash (4 critical masks)?

• Compete with NAND performance and power? 3D 

diode selectors not as good as transistor selectors. 
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BL1 BL2 BL3

WL1

WL2

WL3

USP: Dense. Targets data 
and code storage markets.

Ref: [1] E. Harari, SanDisk Investor Day, Aug. 2008 [2] D. Kau, et al., IEDM 2009 [3] A. Mihnea, D. Sekar, et al., US Patent Appln. 
12/582,509   [4] W. Parkison, US Patent Appln. 20090207645 [5] S. Lai, IEDM 2008



3D Stacked 1T-manyR Architecture 

• Advantages of transistor selectors, but 

higher density than 1T-1R  More suited 

for storage.

• Low number of lithography steps

Key Issues:

• Sneak leakage. Reach high array efficiency 

and NAND-like cost per bit?

• Performance and power consumption 

competitive with NAND flash?
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USP: Dense + Low number of litho 
steps. Targets code and data 

storage markets.

Ref: H. S. Yoon, et al., VLSI 2009. 



3D Stacked 1T-1R Architecture
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USP: Dense + Low number of litho steps + 
Excellent selector. Targets code and data 

storage markets.

• c-Si Junction-Less Transistor 

selector with ion-cut (JLT ok 

for this appln). 

• No sneak leakage, so 

excellent performance/power.

• Shared litho steps

Key Issues:

• Ion-cut cost might need some 

optimization to get to $60 per 

layer

Patented by MonolithIC 3D Inc.



Market Opportunities
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Data Storage

Market (2010):          $22B
Applications:             Cell-phones, tablets, computers
USP vs. incumbent:  Endurance, Performance 
3D Stacked 1T-1R, 3D Stacked 1D-1R, 3D Stacked 1T-manyR

Code Storage

Market (2010):          $5.5B
Applications:             Computers, Cell-

phones
USP vs. incumbent:  Density, Scalability
3D Stacked 1D-1R, 1T-1R, 
3D Stacked 1T-manyR, 3D Stacked 1T-1R

Embedded NVM

Market (2010):           $4.5B
Applications:              Microcontrollers,  

FPGAs, others 
USP vs. incumbent:   Easy to embed

1T-1R



Late 1960s-early 1970s: Forming, filamentary model, 
switching summary of 10 different transition MeOx 
where Me is Ti, Ta, Zr, V, Ni, etc

1960s: Switching observed

Intellectual Property

• Patents, if any, on basic switching concepts, have expired . 

• Good patents on more advanced concepts exist (eg) Pt-replacement approaches, array 

architectures, doping, etc. Can engineer around many of these.

• IP scenario for RRAM a key advantage. Other resistive memories have gate-keepers (eg) 

Basic patents on PCM, CB-RAM, STT-MRAM from Ovonyx, Axon Technologies, Grandis. 
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1970
1968
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Risks and Challenges

Business risk:

Competing with high-volume flash memory technologies. 

Technology risks:

• RESET current scaling a function of current compliance, not device area.                   

How low can it go with acceptable retention?

• Array architecture

• Forming

44
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Conclusions

• Simple materials. Excellent switching + good retention possible.

• Mechanism: Oxygen vacancy filaments

• Many techniques to optimize switching such as materials engg. of top 

electrode and RRAM, transient current control

• Markets: 

- Data storage ($22B)  3D stacked 1T-1R,  1D-1R and 1T-manyR

- Code storage ($5.5B)  3D stacked architectures, 1T-1R                            

- Embedded NVM ($4.5B)  1T-1R attractive if no forming

46

My take:
Exciting and interesting technology. But will RRAM change the world? Too early to say…

Top                
electrode

Bottom 
electrode

Transition 
Metal Oxide



PS: 

What’s all this “Memristor” stuff the press is 

going gaga about?
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Analogy: The RRAM as a Memristor

• V(t) = M(q(t)) I(t)

• M(q(t)) =    V(t)   

= d(Flux)/dt      = d(Flux) 
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Resistance value of RRAM = 
function of charge that has flown 
through it 

dq/dt dq

I(t)

Ref: J. Yang, et al., Nature Nanotechnology, 2008. 



Thank you for your attention!
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Backup Slides
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Doping elements with +3 oxidation state 
into metal oxides with +4 oxidation state 

• Al in HfO2  Al 

replaces Hf in lattice, 

oxygen vacancies 

produced

• More oxygen vacancies 

 supposedly uniform 

conductive filaments

51Ref: B. Gao, et al., Symp. on VLSI Technology, 2009. 



Impact of interface layers

• Ti interface layer in HfO2 RRAM. 

• Ti  getters oxygen  vacancies in HfO2 . Forms TiN/TiOx /HfO1.4 /TiN device.

• Vacancies  reduce forming voltage and improve switching yield. 

Some of the best switching characteristics reported to date for RRAM.
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TiN

TiN
HfOx

Ti

Parameter Results
FORM 3V
SET/RESET voltages <2V
RESET current 25uA possible
Switching time 10ns
Endurance >106 cycles
Retention at 85oC 10 years

As constructed On XPS analysis

Ref: H. Y. Lee, et al., IEDM 2008
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