

3-Dimensional Monolithic Nonvolatile Memories and the Future of Solid-State Data Storage

Dr. Michael A. Vyvoda

Director, Technology Transfer and Operations

3D Technology Group

SanDisk Corporation

February 8th, 2008

Outline

- Flash memory market dynamics: what drives technology advances?
- The floating-gate technology roadmap
- Scaling challenges: what will replace the floating gate?
- Monolithic 3D memory: technical overview and future potential

Flash Memory Market Dynamics

Strong Demand Drivers of Flash Market Growth

- Bits shipped routinely doubles-to-triples year-over-year, fueled by rapid average-selling-price (ASP) reduction (next page)
- This is enabling exciting new markets such as flash-based MP3 players and video recording

Continual \$/MB Reductions Driving New Markets

- Persistent, unrelenting price reductions, enabled by aggressive technology innovation, driving new markets shown on previous page
- Superimposed boom/bust cycles of more benign/more rapid ASP decline

Projected Flash Trends: 2008 - 2011

- 40%-50% annual price reductions sustainable only by top tier players
- Smooth transitions to 5Xnm (2007), 43nm (2008/2009)
 - Transition points to date have been limited by photolithographic constraints (more on this later)
- Increasingly more complex NAND (Floating-Gate to Charge-Trap-Flash) transitions at 32nm, 22nm (2009-2011)
- 3- and 4-bit-per-cell critical for competitiveness in 2009-2011
- 200mm Fabs no longer competitive; 300mm wafers are now the norm in cutting-edge Fabs
- In next 1-2 years capacities should grow dramatically: 512MB-2GB → 4GB-32GB
- In next 3-5 years cumulative price reductions (~10X from 2007 to 2011) should become disruptive to DVD, HDD (hard disk drive), stimulate huge demand and create new Flash markets

Sub-segment Market Growth

USB ("Thumb Drive") Market Size

- 18% compound-annual-growth-rate (CAGR) in units shipped from 2006 → 2009, much higher than the semiconductor industry in aggregate
- Dollar growth less strong due to ASP declines

Flash MP3 Player Market Size

- Very strong growth in the 2003 → 2006 timeframe as MP3 player manufacturers adopted flash memory
- 16% CAGR 2006 → 2009, as with USB showing continued strong growth

Digital Still Camara (DSC) Market Size

DSC Shipments and Installed Base

Source: DSC Forecast IDC Sep'06, Installed Base: SanDisk Estimates

- Roughly 120M DSC units ship per year, with a 260M DSC installed base (!)
- ~240M Flash cards sold per year with market size <\$4.5B in 2007

Video Consuming More Memory

- Video Capture becoming a large driver of bit growth
 - IDC predicts that 4800 PBs will be consumed by Video in 2009¹
 - Today 20% of all PBs used in Video is used for archival storage and will grow to >40% through 2009¹
 - Camera phones are a large component of this

Projected SSD Penetration in Notebooks by 2010

- Solid-state-drive (SSD) adoption driven by price elasticity and MLC adoption (must reasonably compete with rotating-media)
- SSD penetration in ~20% of the notebook market = 32M units
- 1300 PB of NAND flash to be used in SSDs or 11% of NAND output
- TAM >\$3B in 2010 \$100/system ASP

Finally: Mobile Phones as the Market Leader

Source: Strategy Analytics, December 2006

 500M phones with Flash-card slots shipped in 2007, projected to almost double by 2010

Conclusions – Market Dynamics

- The solid-state data storage market, dominated by Flash memory, has grown and will continue to grow very rapidly in the foreseeable future
- This growth has been driven entirely by the effects of price elasticity: lower prices lead to nonlinear growth in bits shipped, due to the appearance of new markets for memory
- The markets for Flash memory are now very diverse, ranging from music to video to still images to hard-disk replacements

NAND Technology Roadmap

NAND Memory Product Roadmap

Source: SanDisk

- Near-yearly technology-node transitions are responsible for the price declines and bit-growth described in the previous slides
 - 50% year-over-year price declines matched by YOY cost declines

New Process Node Transition Every Year

Source: SanDisk

Going Beyond 2 Bits/Cell ("MLC")

- Very advanced controller chips required to move above 2-bit/cell
 - Signal processing and other algorithm innovations to maintain high write speeds and data retention
 - Wear-leveling algorithms to increase endurance

Multi-bit-per-cell Implementation

- 2-bit-per-cell (MLC) has been mainstream for several years now, among the top-tier suppliers
- 3-bit-per-cell (x3) on SanDisk's 56nm technology will ramp in mid-'08

Photolithography as a Technology Enabler

Source: SanDisk

- For the past several years, brute-force physical scaling as lead the way to technology-node transitions
- Immersion lithography as a key enabler for 56nm and onwards

Scaling Challenges and Alternate Devices

Scaling Challenges

- Physical limitations
 - How do we print, etch and fill lines/spaces below 3xnm?
 - To continue on the Moore's Law trajectory of cost reduction, innovation is needed
- Cell-to-cell coupling
 - Vt shift due to coupling from adjacent cells exacerbated at tighter geometries
- Electron-loss tolerance (from floating gate)
 - Reduced allowance for electron loss to avoid large Vt shift

Fig. 4. Comparison of cell-to-cell interference for floating gate and CTF type NAND flash memory.

Source: Kim and Jeong, 2007 IEDM

No.
1000
- 1
- (454
- 10

l.		NONVOLATILE MEMORY TECHNOLOGIES COMPARISON								
	FG NAND	SONOS (CTF)	Mirror Bit	PCM	FeRAM	MRAM	RRAM	Probe Storage	3D NAND	3D Diode
Cell Size	Small ~ 4F²	Small ~ 4F²	Medium ~10F²	Small ~6F²	Large ~20F²	Large ~ 30F²	Small~4F²	Very small (nm) Tip size and scan precision dependent	Small~4F²	Very small 4F ² /n
CMOS Integration	Good	Good	Good	Good Compatible with back end process	Poor Etching difficult	Poor	Potential good. But no sufficient data	Not compatible.	Good	Good
W/E Current per cell	Very Small	Very Small	Medium 10 – 100µa	High ~mA	Small ~1µa	Very High 5-10 ma Scales poorly	Potential small. Scales poorly	Not known. Storage media dependent	Very Small	No Data
Endurance	10 ⁴ -10 ⁵	104	104	~105	10 ⁸ - 10 ¹²	Theoretica Ily infinite	No data	Not Known. Potentially very high	Comparable w/ NAND (?)	No Data
Scalability	Good down to 2x nm	Good down to 2xnm. Possible 1xnm(?)	Down to 5x nm	Questionable. Endurance is affected by the volume of the PCM material	Poor	Poor. Write current increases with scaling	Good	Good. Tip size and scan precision only dependent	Good	Good
MLC Capability	Yes. In producti on.	Possible with improved material	2 bits proved. 4 bits ??	Has potential. Not proved on products.	No	No	Has potential. Not proved.	Not sure	Has potential.	No Data
Company	SanDisk Toshiba Samsung Hynix, Micron	In Developmen t Samsung SanDisk / Toshiba, Macronix	Spansion 1Gb (ORNAND)	In Development Intel, IBM, Samsung 512Mb Quimonda	Fujitsu Ramtron 1Mb	Freescale 4Mb Samsung IBM 16Mb	In development cell level (many companies)	Seagate Nanochip IBM(?)	Samsung Macronix Toshiba	SanDisk · ··

NVM Technology – Next Five Years

- Floating Gate (FG) NAND
 - Likely scalable to ~20nm
 - x3 will likely become mainstream by 2009
 - x4: SanDisk plans to lead through system/controller solutions, initially targeting A/V markets (starting 2008, growing impact in later years)
- Charge Trapping (CTF) NAND
 - Advocated by Samsung and Hynix for below 40nm (~2009)
 - Planar structure has scaling advantages, unknown difficulties/risks
 - x3, x4 implementation may be more challenging for CTF
- NROM (Quadbit)
 - Competitive with NOR, probably not a serious threat to high-density NAND
- PCM, MRAM, Nanotubes, Milipede
 - Not a serious threat to high-density NAND in the next five years

NVM Technology – Next Five Years (Cont'd)

- 3D Read/Write
 - Long-term potential to disrupt/displace NAND, HDD
 - R/W switching actively researched: expected productization in the next several years (more on this later...)

SanDisk 3D Technology Overview

SanDisk 3D Technology Summary

- SanDisk 3D has brought to high volume an NVM where arrays of memory cells are stacked above control logic circuitry in the 3rd dimension
 - Stacking 3D memory directly over CMOS allows for high array efficiency and very small die size
- The technology uses no new materials, processes or Fab equipment
 - Control logic circuitry composed of typical CMOS
 - Memory construction using typical backend processing tools
 - Each memory layer is a repeat of layers below
 - CMOS node can lag memory node ("hybrid scaling")
 - Example: 0.13um-generation CMOS with 80nm-generation memory
- The technology is inherently scalable
 - Multiple technology generations proven using the same cell architecture
 - Lithography-driven scaling allows for rapid cost reduction

SanDisk 3D Memory Cell

 The 3D cell consists of a vertical diode in series with a memory element

- State-change element is...
 - Irreversibly altered in the case of OTP memory
 - Reversibly altered in the case of re-writeable (R/W) memory

SanDisk 3D OTP Memory Cell

OTP Memory Cell I-V Curve

> 4 orders cell window at 2V read voltage

OTP Memory Cell Read Window

Current at 2V for programmed and unprogrammed cells

 Wide [> 4 orders] read margin when considering distributions of millions of cells

SanDisk 3D Physical Cross Section

 Memory array is composed of repeating layers of poly-Si memory cells built directly above CMOS

Al top metal

4 layers of memory cells + tungsten interconnect

2 levels of tungsten routing

LV + HV CMOS logic

SanDisk 3D Array Architecture

SanDisk 3D R/W Cell Development Update

- OTP and R/W cell developments are tightly coupled and share most of the process module and design architecture ideas
 - Recall that the identity and behavior of the switching element defines OTP or R/W capabilities
- Several parallel research activities are being pursued, exploring several types of switching behavior
- We have produced several distinctly different cells, each capable of being integrated into the existing 3D architecture
- We have developed a test vehicle to test out some of the ideas being generated that allows us to rapidly collect statistics on large number of cells
- We are seeing very encouraging results from our development efforts – please stay tuned for results in the near future...

Overall Concluding Remarks

- The flash memory marketplace is one of the most vibrant and exciting in the semiconductor industry, not to mention one of the most competitive
- The dominant flash cell architecture, the conventional floating gate, will see significant, if not unsurpassable, scaling challenges below the 2x nm technology node
- In order to continue the pace of price reductions that consumers demand, significant innovation is needed, both at the device and system level
- Many candidate device architectures are in development; we are strong believers that 3D is a viable candidate