

# **Brief Overview of Microsystems and Nanoelectronics**

Seminar Presentation at UC Berkeley Kai-Erik Elers VTT Technical Research Centre of Finland

# -√vπ

## **Application Driven Research for Innovation**





# VTT in brief 2010

Multidiciplinary R&D organisation

#### **Global presence**

Headquartered in Finland

- 4 main domestic sites
  - Espoo, Tampere, Oulu, Jyväskylä
- Brussels, Belgium
- Silicon Valley, US
- St. Petersburg, Russia
- Shanghai, China
- Seoul, South Korea

Turnover ~ \$400 M
Personnel 2,900
6,200 customers
Established 1942
ISO9001:2000 certified



## **VTT's MICRONOVA**

#### Ultraclean Wafer Foundry for Micro and Nanofabricaton





## **VTT's strategy in silicon technology**



#### Functional integration on CMOS silicon platform:

- Integration of MEMS (or NEMS) components for actuators, sensors, gyroscopes, accelerometers etc
- Integration of optoelectronics for control and switching of optical signals
- Integration of bioactive functions for biological sensing and interfacing
- Integration of RF functionality using thin film technologies such as FBAR, ferroelectrics, passive components etc





#### **MEMS Sensors and Transducers**



- SOI based technology for CMOS on MEMS
- Surface micromachining
- Thin film MEMS based on amorphous metals
- Applications:
  - Integrated altimeters using CMOS on MEMS technology
  - cMUT ultrasonic transducers
  - Microcompass
  - Microbalance
  - Accelerometers
  - Gyros
  - MEMS microphone



#### VTT TECHNICAL RESEARCH CENTRE OF FINLAND







## **Nanoimprint lithography**

#### NaPa - Emerging Nanopatterning Methods

- Integrated project coordinated by VTT for EU 6. framework program
- Nanoimprint lithography development since 1998 in EU funded projects
- Imprints with sub 20 nm accuracy
- Nanopatterning stepper assessment with Süss MicroTec
- Materials development with Microresist Technology

#### www.phantomsnet.net/NAPA/index.php







#### **Tunable MEMS Fabry-Perot interferometer for NIR**





#### Silicon waveguides for photonic circuits

- SOI waveguide components
  - > Modulators, switches, filters, adiabatic couplers etc.
  - VTT uses advanced 3D processing methods to realise state-of-the-art components and circuits
  - > Lowest losses with 2-10  $\mu$ m thick SOI (0.1 dB/cm)
  - > Smallest footprint with <1  $\mu$ m thick SOI



9



VTT TECHNICAL RESEARCH CENTRE OF FINLAND

30/01/2010

10



#### Lab-On-Chip



# √vπ

## **Timing devices – replacing quartz with silicon**





12

#### **Thin Film Bulk Acoustic Wave Resonators**

• Extension of the crystal oscillator (eg. Quartz oscillator) principle to the GHz range by thin film technology

• RF filters utilising FBARs have many advantages over SAW and other filter technologies:

- high Q-values (1000 1500 achieved)
- steep passband skirts
- low insertion loss (~1 dB)
- high power handling capability
- applicability to high frequencies 2 ... 5 GHz (...
- 10 20 GHz?)
- small size (<< ceramic filter, ~ SAW-filter)
- robust
- low cost manufacturing
- good ESD handling
- ultimately, integration with RF-IC?





# **Superconducting Thin Films**



#### Low temperature superconducting thin films

- Nb on Si
- NbN on Si
- Epitaxial Nb and Ta on sapphire
- Nb/Al/AlOx/Al/Nb Josephson junction technology

#### Applications in superconducting devices

- SQUIDs for magnetoencephalography (MEG)
- Josephson voltage standards
- Superconducting tunneling junction (STJ) detectors
- RSFQ circuits
- Superconducting readout for transition edge bolometers



Signal of human IgG, 1:1 mixed with sinapinic acid. The trimer above 450 kDa is clearly visible.



# √vπ

## Superconducting sensors for brain research





#### **Terahertz imaging sensors**

- Integrated, low cost pixels with a room temperature readout (developed by VTT)
- Capability for low-resolution spectroscopic imaging
- Best devices show radiometric sensitivity of 0.6 mK/Hz<sup>1/2</sup> (0.1 - 1 THz)
- In collaboration with NIST, USA
- Operating temperature ~4 K, being transferred to operation within a closedcycle cryocooler











VTT TECHNICAL RESEARCH CENTRE OF FINLAND

30/01/2010



16

## Hybridized pixel detectors

ALICE ITS: 240 5x1 SPD modules (~10 million pixels)



LHCb RICH: 830 single assemblies for HPD anodes







18

## **Ring Imaging Cherenkov HPDs**

- Hybrid photon detectors for low noise detection of Cherenkov radiation
- Pixel anodes mounted on a ceramic carrier inside a vacuum tube
- New high lead flip chip process developed for tube assembly
- Total of 830 production assemblies were made









# **Atomic Layer Deposition**

Seminar Presentation at UC Berkeley Kai-Erik Elers VTT Technical Research Centre of Finland



#### CONTENTS:

- Background of ALD
- ALD principle and its characteristic features
- Precursors and surface chemistry
- ALD reactors for R&D and hardware design
- ALD materials and their industrial applications



# -√vπ

23

#### **Source Material for the Presentation**

Dr. Jaakko Niinistö



Prof. Markku Leskelä



Prof. Mikko Ritala





Dr. Riikka Puurunen



#### **University of Helsinki**

- Dept. Chem., Inorganic Chemistry Lab.
- precursor synthesis
- process development
- characterization



#### Technical Research Centre of Finland

- Applied research
- Process integration for ALD
- ALD films in devices









24

# **Background of ALD**

Atomic Layer Deposition was developed by Dr. T. Suntola and co-workers in Finland to meet the needs of producing improved thin films and structures based thereupon for electroluminescent thin film (TFEL) flat panel displays

- First Finnish Patent 1974
- First U.S. patent 1977



The head of SEMI organization President and CEO Stanley T. Myers (left) presents the European SEMI 2004 award to Dr. Tuomo Suntola (right) at Semicon Europa 2004 exhibition in Munich.

| Instrumentarium Oy |                                                   | Elcoteq Oy                                                                                                                                                                                          |                                                                          |                                                               |      |
|--------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|------|
|                    | Lohja Oy                                          | Planar Internat                                                                                                                                                                                     | tional Ltd.                                                              |                                                               |      |
|                    |                                                   | Microchemistry Ltd.                                                                                                                                                                                 | ASM Int                                                                  | ernational Ltd.                                               |      |
| Dr. Tuomo Suntola  |                                                   | and the second                                                                                                                                                                                      |                                                                          | Picosun Oy<br>Beneg                                           |      |
| 1974 19            | 980                                               | 1990                                                                                                                                                                                                | 2000                                                                     | Oxford Inst2010                                               |      |
| ALD m              | Travelling wav<br>Chemical exc<br>Working e<br>Th | strated with zinc sulfide ZnS (In<br>ve" reactor (Lohja Oy)<br>hange reactions demonstrated<br>lectroluminescent (EL) structur<br>e first ALD-EL product reveale<br>Production line for flat EL mat | nstrumentariur<br>for ZnS and n<br>es demonstrat<br>d<br>rix displays P- | n Oy)<br>netal oxides<br>:ed with ALD<br>250 → P-400 reactors |      |
|                    |                                                   |                                                                                                                                                                                                     | ALD-EL display                                                           | paneis Lonja Oy → Planar Int. L                               | ta.  |
|                    |                                                   | F-120 reactor (Micr                                                                                                                                                                                 | ochemistry Lte                                                           | d.)                                                           |      |
|                    |                                                   | ALD-CdTe sol                                                                                                                                                                                        | ar cell demons                                                           | strated                                                       |      |
|                    |                                                   | Deposition                                                                                                                                                                                          | of catalytical o                                                         | coatings by ALD demonstrated                                  |      |
| 04                 |                                                   | F-4                                                                                                                                                                                                 | 50, <mark>F-850</mark> read                                              | ctors for coating large flat surfaces                         | S    |
|                    |                                                   | [                                                                                                                                                                                                   | 🗖 F-200 rea                                                              | ctor for silicon wafers                                       |      |
|                    |                                                   |                                                                                                                                                                                                     |                                                                          | Reactor for cluster operations (/                             | ASMI |

Dr. Suntola worked in VTT in early 70's

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

30/01/2010

25



#### **Popular ALD**





26





# **ALD Cycle**





28

# ALD Cycle for HfO<sub>2</sub> and ZrO<sub>2</sub>

#### Self-limiting film growth via alternate saturative surface reactions





#### **Characteristic ALD Curves**



- a) The precursor pulse length (dose) has no effect on the growth rate provided that the surface is saturated, i.e. all available surface sites are occupied by adsorbed precursor molecules (Steps 1 and 2)
- b) Factors limiting the self-limiting growth at various temperatures



#### Film Growth by Repeating Cycle





#### **Benefits of ALD**

| Characteristic feature of an ALD proces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ss Practical advantage                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Self-limiting growth process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Precise film thickness control by the number of deposition cycles                                               |
| <u>20 nm</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No need to control reactant flux homogeneity                                                                    |
| Nanolaminate film stack of TiN (10 nm) +<br>3 x (WxN (2 nm) + TiN (2 nm)) + TiN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Excellent uniformity and conformality                                                                           |
| 10 nm).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Large-area and batch capability                                                                                 |
| C molybdenum 80 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dense, uniform, homogeneous and pinhole-free films                                                              |
| glue ZrO2<br>Ta2O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Atomic level composition control                                                                                |
| Zr <sub>x</sub> Nb <sub>y</sub> O <sub>z</sub><br>Ta <sub>2</sub> O <sub>5</sub><br>Zr <sub>x</sub> Nb <sub>y</sub> O <sub>z</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Good reproducibility and straightforward scale-up                                                               |
| $Ta_2O_5$ $Zr_xNb_yO_2$ $Ta_2O_5$ $Zr_xNb_yO_2$ $Ta_2O_5$ $Zr_xNb_yO_2$ $Ta_2O_5$ $\Sigmar_xNb_yO_2$ $Ta_2O_5$ $\Sigmar_xO_5$ $\Sigmar_xO_5$ $\Sigmar_2O_5$ < | Zr <sub>x</sub> Si <sub>y</sub> O <sub>z</sub> - Zr <sub>x</sub> Ti <sub>y</sub> O <sub>z</sub><br>nanolaminate |



#### **Film Conformality**





#### Limitations

- Low effective deposition rate
  - 100 nm/h is quite common value for good ALD processes
- No existing processes for some materials
  - Si, Ge, many metals, metal silicides, multicomponent oxide superconductors, ferroelectrics and chalcogenides
- No knobs to adjust crystal phase of deposited material (excl. temperature)
- Deviations from 'ideal ALD growth'
  - Incubation time, not truly self-limiting growth









#### **Precursor chemistry in ALD**



Ref. M. Ritala and J. Niinistö, *Atomic Layer Deposition,* in Chemical Vapour Deposition: Precursors and Processes, Eds. Jones, A.C. and Hitchman, M.L., RSC, *in press.* 



# ALD of noble metals with O<sub>2</sub> based chemistry

- Ru, Pt, Ir, Rh, Pd
  - capable of dissociating O<sub>2</sub> to atomic O
- organometallic and β-diketonate metal precursors
- summarised in PhD thesis of Titta Aaltonen 2005 ethesis.helsinki.fi/julkaisut/mat/kemia/vk/aaltonen/





36






### **ALD research at University of Helsinki**



Starting from precursor chemistry, develop new well characterized ALD processes and materials, and transfer these to the first stages of applied research, in a wide range of application areas.

 $Sr(C_5iPr_3H_2)_2 + H_2O + Ti(OiPr)_4 + H_2O \rightarrow SrTiO_3$ 





Vehkamäki et al., Electrochem. Solid State Lett. 2 (1999) 504.

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

30/01/2010



38

### **High-K Compounds**





### Published ALD Precursor for ZrO<sub>2</sub>

| Precursors                                                           |                  | $T_{\mathrm{growth}}$ |                |                                 | Impurities (at preferred Tgrowth) |          |                               |                 |
|----------------------------------------------------------------------|------------------|-----------------------|----------------|---------------------------------|-----------------------------------|----------|-------------------------------|-----------------|
| Metal precursor                                                      | O source         | Range [°C]            | Preferred [°C] | Saturation verified<br>at 300°C | C [at-%]                          | H [at-%] | Other (if detected)<br>[at-%] | Analysis method |
| Halides                                                              |                  |                       |                |                                 |                                   |          |                               |                 |
| ZrCl <sub>4</sub>                                                    | H <sub>2</sub> O | 180-600               | 300            | YES                             |                                   | 1.5      | Cl: 0.6-0.8                   | TOF-ERDA        |
|                                                                      | $H_2O + H_2O_2$  | 180-600               | 300            | YES                             |                                   | N.R.     |                               |                 |
|                                                                      | 02*              | 500                   | 500            |                                 |                                   |          |                               |                 |
| Zrl <sub>4</sub>                                                     | $H_2O + H_2O_2$  | 230-500               | 275-325        | YES                             |                                   | 3-8      | I: 0.5-1.2                    | TOF-ERDA, XPS   |
| Amides                                                               |                  |                       |                |                                 |                                   |          |                               |                 |
| Zr(NEtMe) <sub>4</sub>                                               | $H_2O$           | < 250                 | < 250          | NO                              | < 1                               | N.R.     | N:<0.25                       | RBS             |
|                                                                      | O3               | 150-350               | < 300          | NO                              | 1                                 | N.R.     |                               | AES             |
| Zr(NMe <sub>2</sub> ) <sub>4</sub>                                   | $H_2O$           | < 300                 | < 300          | NO                              | < 1                               | N.R.     | N: < 0.25                     | RBS             |
| Zr(NEt <sub>2</sub> ) <sub>4</sub>                                   | $H_2O$           | < 350                 | < 350          | NO                              | < 1                               | N.R.     | N: < 0.25                     | RBS             |
|                                                                      | O2               | 250                   | 250            |                                 | 3-5                               | N.R.     |                               | AES             |
| ZrCl <sub>2</sub> [N(SiMe <sub>3</sub> ) <sub>2</sub> ] <sub>2</sub> | $H_2O$           | 150-350               | 250            | NO                              | N.R.                              | N.R.     | Si: 4                         | RBS, SIMS       |
| Amidinates                                                           |                  |                       |                |                                 |                                   |          |                               |                 |
| Zr(amd) <sub>4</sub>                                                 | $H_2O$           | 150-350               | 150-350        | YES                             | N.R.                              | N.R.     |                               |                 |
| Alkoxides                                                            |                  |                       |                |                                 |                                   |          |                               |                 |
| Zr(O <sup>t</sup> Bu) <sub>4</sub>                                   | O2               | 250                   | 250            | NO                              | 6-8                               | N.R.     |                               | AES             |
|                                                                      | H <sub>2</sub> O | 150-300               | < 250          |                                 | 8                                 | 2        |                               | TOF-ERDA        |
|                                                                      | N <sub>2</sub> O | 150-300               | < 250          | NO                              | N.R.                              | N.R.     |                               |                 |
| Zr(dmae) <sub>4</sub>                                                | $H_2O$           | 190-340               | 190-340        | NO                              | 5                                 | 30       | N: < 4                        | TOF-ERDA        |
| Zr(O'Bu)2(dmae)2                                                     | H <sub>2</sub> O | 190-340               | 190-340        | NO                              | 1.7-3                             | 8-13     | N: 0.3-1.3                    | TOF-ERDA        |
| Zr(O <sup>i</sup> Pr) <sub>2</sub> (dmae) <sub>2</sub>               | H <sub>2</sub> O | 190-340               | 190-340        | NO                              | N.R.                              | N.R.     | N: < 1                        | TOF-ERDA        |
| β-Diketonates                                                        |                  |                       |                |                                 |                                   |          |                               |                 |
| Zr(thd)4                                                             | O3               | 275-500               | 375            | YES                             | 0.2                               | 0.3      | F: < 0.1                      | TOF-ERDA        |
| Cyclopentadienyls                                                    |                  |                       |                |                                 |                                   |          |                               |                 |
| Cp <sub>2</sub> ZrMe <sub>2</sub>                                    | H <sub>2</sub> O | 200-500               | 350            | YES                             | < 0.1                             | < 0.1    | N.R.                          | TOF-ERDA        |
|                                                                      | O3               | 250-500               | 310-365        | YES                             | 0.2                               | 0.1      | F: 0.1                        | TOF-ERDA        |
| Cp <sub>2</sub> ZrCl <sub>2</sub>                                    | O3               | 200-500               | 300            | YES                             | 0.5                               | 0.5      | Cl: < 0.07                    | TOF-ERDA        |
| (CpMe) <sub>2</sub> ZrMe <sub>2</sub>                                | H <sub>2</sub> O | 300-500               | < 400          | YES                             | < 0.5                             | 0.4      |                               | ERDA            |
|                                                                      | O <sub>3</sub>   | 250-450               | < 400          | YES                             | < 1                               | N.R.     |                               | RBS             |
| (CpMe)2Zr(OMe)Me                                                     | H <sub>2</sub> O | 300-500               | < 400          | YES                             | < 0.5                             | 0.5      |                               | ERDA            |
|                                                                      | O3               | 250-500               | < 400          | YES                             | < 1                               | N.R.     |                               | RBS             |
| (CpMe) <sub>2</sub> Zr(O <sup>t</sup> Bu)Me                          | H <sub>2</sub> O | 300-450               | < 350          | NO                              | N.D                               | N.R.     |                               | AES             |
| Ansa-metallocenes                                                    |                  |                       |                |                                 |                                   |          |                               |                 |
| (Cp-CMe-)ZrMe-                                                       | O3               | 200-350               | <350           | NO                              | 2.8                               | N.R.     |                               | AES[            |
| (Cp2CMe2)ZrMe(OMe)                                                   | O3               | 200-350               | <350           | NO                              | 1.8                               | N.R.     |                               | AES             |
| Mixed alkylamido-cyclopen                                            | tadienyls        |                       |                |                                 |                                   |          |                               |                 |
| CpZr(NMe <sub>2</sub> ) <sub>3</sub>                                 | O3               | 250-400               | 300            | YES                             | < 1                               | N.R.     |                               | RBS, AES        |
| (CpMe) <sub>2</sub> (NMe <sub>2</sub> ) <sub>3</sub>                 | O3               | 250-400               | 300            | YES                             | <1                                | N.R.     |                               | RBS, AES        |
| (CpEt) <sub>2</sub> (NMe <sub>2</sub> ) <sub>3</sub>                 | O3               | 250-400               | 300            | YES                             | < 1                               | N.R.     |                               | RBS, AES        |
|                                                                      |                  |                       |                |                                 |                                   |          |                               |                 |

\* atmospheric pressure.

**V** 

|                   | Precursor LnX <sub>3</sub>            |                         |
|-------------------|---------------------------------------|-------------------------|
| alkoxides         | La(OPh) <sub>3</sub>                  | Not suitable for ALD    |
|                   | La(bammp) <sub>3</sub>                | (thermal decomposition) |
|                   | La(dmomph) <sub>3</sub>               |                         |
|                   | $La(O^tBu)_3$                         |                         |
|                   | La(mmp) <sub>3</sub>                  |                         |
|                   | La(dmop) <sub>3</sub>                 |                         |
|                   | La(thd) <sub>3</sub>                  |                         |
|                   |                                       | Ozone needed            |
| Cyclopentadienyls | La(Cp) <sub>3</sub>                   | Thermal decomposition   |
|                   | La(MeCp) <sub>3</sub>                 | Thermal decomposition   |
|                   | La(EtCp) <sub>3</sub>                 | Partial decomposition   |
|                   | La( <sup>i</sup> PrCp) <sub>3</sub>   | Partial decomposition   |
|                   | La( <sup>t</sup> BuCp) <sub>3</sub>   | N.R.                    |
| Others            | La( <sup>i</sup> Pr-amd) <sub>3</sub> | Thermal stability?      |
|                   | $La[N(SiMe_3)_2]_3$                   | Partial decomposition   |





### ALD of rear earth oxides

- The rare earths have only a few volatile compounds
- Solid β-diketonates, most notably RE(thd)<sub>3</sub>, can be used in ALD (thd=2,2,6,6-tetramethyl-3,5-heptanedione)
- Ozone is required as an oxygen source
- First ALD RE oxide processes published in some 15 years ago (Growth of Y<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub>, Refs. H. Mölsä and L. Niinistö, Adv. Mater. Opt. Electr. 1994, MRS 1994)
- Growth rate of RE<sub>2</sub>O<sub>3</sub> films mainly depends on the ionic radius:







### Some Cp based RE precursors tested for ALD

|            | Ionic     | Ligand       |              |                    |                   |
|------------|-----------|--------------|--------------|--------------------|-------------------|
| Rare earth | radius, Å | Ср           | СрМе         | Cp <sup>i</sup> Pr | CpMe <sub>4</sub> |
| Sc         | 0.75      | Suitable     |              |                    |                   |
| Er         | 0.89      |              | Suitable     |                    |                   |
| Y          | 0.90      | Suitable     | Suitable     |                    |                   |
| Gd         | 0.94      |              | Partial dec. |                    | Partial dec.      |
| Pr         | 0.99      | Not suitable |              | Partial dec.       | Not suitable      |
| Се         | 1.02      |              | Not suitable |                    |                   |
| La         | 1.03      | Not suitable | Partial dec. | Partial dec.       | Not suitable      |



30/01/2010



### Surface chemistry and in situ studies

- In situ studies of reactions: Infrared spectroscopy (IRS), mass spectrometry (MS), quartz crystal microbalance (QCM), Fourier transform infrared spectroscopy (FTIR), XPS
- ALD process is often made in analysis equipment ⇒ Process performance is compromised (e.g. CVD growth) ⇒ conclusion can be misleading
- 1) Analysis equipments can be integrated to the ALD reactors or 2) Sample can be transferred between modules with cluster tool





### In situ reaction mechanism studies on ALD processes





 quadrupole mass spectrometer (QMS) and quartz crystal microbalance (QCM) attached to a flow-type F120 reactor

RuCp<sub>2</sub> Purge O<sub>2</sub> Purge

300

310

290

m₁

45

 $m_{o}$ 

330

m/z = 44

320



### $RuCp_2 - O_2$ process

QCM: mass decreases during the RuCp<sub>2</sub> pulse and increases during the  $O_2$ pulse!

QMS:  $H_2O$  and  $CO_2$  are released during both the  $RuCp_2$  and  $O_2$  pulses





Mass (a.u.)

270

260

280

T. Aaltonen, A. Rahtu, M. Ritala, and M. Leskelä, Electrochem. Solid-State Lett., 6 (2003) C130.



46

### **Suggested reaction mechanism**



47



### **TMA/O<sub>3</sub> process**

Ozone-based growth of  $AI_2O_3$  from TMA recently studied by George *et al.* with QMS and FTIR

- Reaction mechanism:
- During TMA pulse, CH<sub>4</sub> released
- During O<sub>3</sub> pulse, CH<sub>4</sub>, CO<sub>2</sub>
  and CO released
- Water as a by-product **not seen**



**Figure 14.** Proposed mechanism for  $O_3$  reaction during  $Al_2O_3$  ALD using TMA and  $O_3$ .

J. Phys. Chem. C XXXX, xxx, 000

Al<sub>2</sub>O<sub>3</sub> Atomic Layer Deposition with Trimethylaluminum and Ozone Studied by in Situ Transmission FTIR Spectroscopy and Quadrupole Mass Spectrometry

David N. Goldstein,<sup>†</sup> Jarod A. McCormick,<sup>‡</sup> and Steven M. George<sup>\*,†,‡</sup>

48



### **TMA/O<sub>3</sub> process at 280°C**

By-products released during the TMA pulse

- CH<sub>4</sub>
- → TMA chemisorbs to the surface via methyl ligands as expected
- By-products released during the ozone pulse
- CH<sub>4</sub>
- CO<sub>2</sub>
- CO (fragmentation of the CO<sub>2</sub>)
- H<sub>2</sub>O





49

### Water formed in TMA/O<sub>3</sub> process





50





### **Perpendicular and cross flow reactors**







### **Batch ALD in cross flow reactor**





### **Perpendicular vs. cross flow reactor**

- Perpendicular flow with showerhead or diffuser plate offers better film uniformity than cross flow reactor:
  - Thermally non-stable precursors
  - Secondary reactions of gaseous by-products of the surface reaction
- Flow dynamics can suffer in showerhead reactor making it slower than cross flow reactor
- Cross flow reactor is clearly more feasible to scale up for batch processing

Film uniformity in Atomic Layer Deposition: Elers et al., chemical.vap. Deposition 2006,12, 13-24



### IC RF plasma source in "remote" plasma ALD





### **Capacitively coupled direct plasma ALD**





### Plasma vs. non-plasma ALD

- There is no clear advantage to use plasma for metal oxide processes (some exceptions found in electrical properties)
- Advantage of plasma can be seen in low temperature reduction processes to make some metals
- Plasma process compromises some characteristic ALD properties: step coverage, surface sensitivity of substrate, bacth capability
- Plasma process includes more novelty: easier to publish
- Equipment and process tehcnology of plasma ALD is not mature yet for production



### **Generations of ALD Reactors in FINLAND**





F-150

P400 replaced P250



Sven Lindfors and his ALD reactor in 1978



P200

P300



F950



**TFS500** 



TFS 200



Sunale

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

30/01/2010



58

### SERIED Widests range of ALD tools for industry and research

TFS 200



Also special research versions: TFS 200R - Rotating version for continuous ALD TFS 200 With Plasma





TFS 1200

Beneq is the global leader for industrial ALD applications.

59



### Savannah ALD Research System



**Precursor Cylinders** 

#### • Max. substrate size, 3D objects

•100mm, 200mm or 300mm samples. Dome lid accomodates batch processing and 3D objects.

#### •Number of liquid, gas and heated sources

• Up to 6 precursor ports (all heated lines)

•Cambridge NanoTech precursor ports are invidually heated and each port accomodates solid, liquid and gas precusors

• Max. Temp. of heated source: Up to 200°C

•Chamber flow dynamics: Cross flow

•Films - Oxides:  $Al_2O_3$ ,  $HfO_2$ ,  $La_2O_3$ ,  $SiO_2$ ,  $TiO_2$ , ZnO,  $ZrO_2$ ,  $Ta_2O_5$ ,  $In_2O_3$ ,  $SnO_2$ , ITO,  $Fe_2O_3$ ,  $MnO_x$ ,  $Nb_2O_5$ . Nitrides: WN,  $Hf_3N_4$ ,  $Zr_3N_4$ , AIN, TiN. Metals: Ru, Pt, W, Ni, Fe, Co

•PEALD: N/A

#### •Savannah Reactor Features

•Two deposition modes

•Continuous Mode for rapid film growth

•Exposure Mode for high aspect ratio (> 2,000:1)



### Fiji Plasma ALD Research System



#### Max. substrate size, 3D objects

•200mm samples, 3D objects that are 50mm high

#### • Number of liquid, gas and heated sources

•Up to 6 precursor ports (all heated lines) and up to 6 plasma gases

•Cambridge NanoTech precursor ports are invidually heated and each port accomodates solid, liquid and gas precusors

• Max. Temp. of heated source: Up to 200°C

•Chamber flow dynamics: Perpendicular

•Films - Oxides:  $Al_2O_3$ ,  $HfO_2$ ,  $La_2O_3$ ,  $SiO_2$ ,  $TiO_2$ , ZnO,  $ZrO_2$ ,  $Ta_2O_5$ ,  $In_2O_3$ ,  $SnO_2$ , ITO,  $Fe_2O_3$ ,  $MnO_x$ ,  $Nb_2O_5$ . Nitrides: WN,  $Hf_3N_4$ ,  $Zr_3N_4$ , AIN, TiN. Metals: Ru, Pt, W, Ni, Fe, Co

•PEALD: Yes

#### •Fiji Reactor Features

- •Three deposition modes
  - •Plasma Mode

•Continuous Mode for rapid film growth

•Exposure Mode for high aspect ratio (> 2,000:1)

•Load-lock and cluster tool capable

•High temperature capability (up to 1,000°C)<sup>60</sup>



## SUNALE<sup>™</sup> Atomic Layer Deposition Systems

High quality ALD systems for micro- and nanotechnology applications

### **Picosun Defines the New Standards for ALD Research and Production**

SUNALE<sup>™</sup> ALD systems are user-friendly, reliable and productive process tools, which offer unique scalability of results from R&D to production.

### **SUNALE™ ALD Systems Interest Groups**

Universities, research institutes and industry.



61



## **Oxford Instruments (FlexAL)**





### Some important design rules of ALD reactors

- Reaction chamber
  - Hot wall reaction chamber, minimized volume, no dead gas pockets
  - Double wall chamber makes possible easy maintenance ⇒inner and outer chamber isolated from each other
  - Effective gas mixing required for large substrates
- Source delivery lines
  - Reactive precursors have individual source delivery lines from the source to the reaction Chamber

- Positive temperature gradient from the source to the reaction chamber
  - 1. Heating tapes ⇒ 2. heating jackets ⇒ 3. body mounted heating ⇒ 4. oven
    - 1/2: Cold spots nearly impossible to avoid
- Pulsing valves must be as close possible to the reaction chamber
  - Minimized purging volume
  - Degassing of "sticky" precursors like water
- No dead gas pockets

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

30/01/2010

64



### Inert gas valving





### Some important design rules of ALD reactors

- Sources
  - Grain size of powder and powder distribution in the source vessel impact to dosing
  - High viscous liquids may form a film on the surface and thus, require mixing
  - Pressure transducer helps to indentify empty source vessel and adjust high enough temperature
  - Heating requirements are the same as for the source delivery lines
  - For high pressure gas source: the volume between the last flow restriction and pulsing valve must be minimized
     ⇒ It causes high pressure dose



65









### Materials deposited by ALD

| Oxides                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dielectric                 | $\begin{array}{l} Al_{2}O_{3},\ TiO_{2},\ ZrO_{2},\ HfO_{2},\ Ta_{2}O_{5},\ Nb_{2}O_{5},\ Sc_{2}O_{3},\ Y_{2}O_{3},\ MgO,\ B_{2}O_{3},\ SiO_{2},\ GeO_{2},\\ La_{2}O_{3},\ CeO_{2},\ PrO_{x},\ Nd_{2}O_{3},\ Sm_{2}O_{3},\ EuO_{x},\ Gd_{2}O_{3},\ Dy_{2}O_{3},\ Ho_{2}O_{3},\ Er_{2}O_{3},\ Tm_{2}O_{3},\\ Yb_{2}O_{3},\ Lu_{2}O_{3},\ SrTiO_{3},\ BaTiO_{3},\ PbTiO_{3},\ PbZrO_{3},\ Bi_{x}Ti_{y}O,\ Bi_{x}Si_{y}O,\ SrTa_{2}O_{6},\\ SrBi_{2}Ta_{2}O_{9},\ YScO_{3},\ LaAlO_{3},\ NdAlO_{3},\ GdScO_{3},\ LaScO_{3},\ LaLuO_{3},\ Er_{3}Ga_{5}O_{13}\end{array}$ |
| Conductors/ Semiconductors | In <sub>2</sub> O <sub>3</sub> , In <sub>2</sub> O <sub>3</sub> :Sn, In <sub>2</sub> O <sub>3</sub> :F, In <sub>2</sub> O <sub>3</sub> :Zr, SnO <sub>2</sub> , SnO <sub>2</sub> :Sb, ZnO, ZnO:Al, ZnO:B, ZnO:Ga, RuO <sub>2</sub> , RhO <sub>2</sub> , IrO <sub>2</sub> , Ga <sub>2</sub> O <sub>3</sub> , V <sub>2</sub> O <sub>5</sub> , WO <sub>3</sub> , W <sub>2</sub> O <sub>3</sub> , NiO, FeO <sub>x</sub> , CrO <sub>x</sub> , CoO <sub>x</sub> , MnO <sub>x</sub>                                                                                          |
| Other ternaries            | LaCoO <sub>3</sub> , LaNiO <sub>3</sub> , LaMnO <sub>3</sub> , La <sub>1-x</sub> Ca <sub>x</sub> MnO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nitrides                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Semiconductors/Dielectric  | BN, AlN, GaN, InN, $SiN_x$ , $Ta_3N_5$ , $Cu_3N$ , $Zr_3N_4$ , $Hf_3N_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Metallic                   | TiN, Ti-Si-N, Ti-Al-N, TaN, NbN, MoN, WN <sub>x</sub> , WN <sub>x</sub> Cy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| II-VI compounds            | ZnS, ZnSe, ZnTe,<br>CaS, SrS, BaS,<br>CdS, CdTe, MnTe, HgTe,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| II-VI based TFEL phosphors | ZnS:M (M = Mn, Tb, Tm),<br>CaS:M (M = Eu, Ce, Tb, Pb),<br>SrS:M (M = Ce, Tb, Pb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| III-V compounds            | GaAs, AlAs, AlP, InP, GaP, InAs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fluorides                  | $CaF_2$ , $SrF_2$ , $MgF_2$ , $LaF_3$ , $ZnF_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Elements                   | Ru, Pt, Ir, Pd, Rh, Ag, W, Cu, Co, Fe, Ni, Mo, Ta, Ti, Al, Si, Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Others                     | La <sub>2</sub> S <sub>3</sub> , PbS, In <sub>2</sub> S <sub>3</sub> , Cu <sub>x</sub> S, CuGaS <sub>2</sub> , Y <sub>2</sub> O <sub>2</sub> S, WS <sub>2</sub> , TiS <sub>2</sub> , SiC, TiC <sub>x</sub> , TaC <sub>x</sub> , WC <sub>x</sub> , Ca <sub>x</sub> (PO <sub>4</sub> ) <sub>y</sub> , CaCO <sub>3</sub>                                                                                                                                                                                                                                                |



### Potential use of ALD in MEMS

- Electrically insulating conformal layers at low temperatures
- Etch masks, etch stop layers
- Conductive seed layers for plating
- Thermally conductive conformal layers
- Hydrophobic layers  $\rightarrow$  decrease of stiction
- Hermetic coatings
- Biocompatible coatings
- Closing of nanoscale pores
- Optical layers (reflective, anti-reflective, black absorbers)
- Layers reducing frictional wear
- Diffusion barrier
- Passivation
- ...

First reports of ALD in MEMS year 2002  $\rightarrow$  developing area



### **MEMS** Magnetometer











### **VI**T

### **Tunable UV/VIS/IR band-pass filters**



• Potential use in fuel quality monitoring in automotive applications

| <u>a a</u>      |  |                              | 2 2          |
|-----------------|--|------------------------------|--------------|
| Fused<br>Silica |  |                              |              |
|                 |  | MgF <sub>2</sub> antireflect | tive coating |

### **Key parameters**

Wavelength range:

Orders:

Dielectric mirror materials:

Sacrificial layer material:

Aperture size:

350 ... 5000 nm  $1^{st}$  up to the  $6^{th}$  order FPIs  $Si_3N_4$ ,  $SiO_2$ , Si,  $AI_2O_3$  or  $TiO_2$ Polymer or oxide 1 - 3 mm dia.





# Visible FPI process flow $\rightarrow \rightarrow$ VTT Monolithic Spectrometer



72



### **VTT Monolithic spectrometer compared to state-of-the-art**







CP20 Compact Spectrometer System

|                                             | VTT monolithic spectrometer          | Boehringer<br>Ingelheim<br>microParts GmbH<br>Micro-spectrometer | Horiba Jobin-<br>Yvon<br>Micro-<br>spectrometer |
|---------------------------------------------|--------------------------------------|------------------------------------------------------------------|-------------------------------------------------|
| Dimensions                                  | TO-5, diam.=9.2<br>mm, Height 4.2 mm | 54 mm x 32 mm x 9.5<br>mm                                        | 34.5 mm x 13.5<br>mm x 9.5 mm                   |
| Spectral range                              | (220)350 – 1100 nm                   | 350 – 850 nm                                                     | 380 – 760 nm                                    |
| Spectral resolution @ FWHM                  | 2 – 7 nm                             | < 10 nm                                                          | < 5 nm                                          |
| Minimum Transmission at full spectral range | > 70 %                               | > 30 %                                                           | > 30 %                                          |
| Relative manufacturing cost                 | 1.0                                  | 4.0                                                              | 8.0                                             |
30/01/2010



## **EL display production since 1983**

- Planar has delivered in total over 3.000.000 million displays by 2009
  - Denso in Japan started EL production in late 90's

Helsinki-Vantaa airport information boards were delivered in 1983



Transparent displays



PLANAR



## Atomic Layer Epitaxy (ALE) until mid 90's



30/01/2010



## **Industrial applications**

- Thin film electroluminescent displays (TFELs)
  - Al<sub>2</sub>O<sub>3</sub>,TiO<sub>2</sub>, ZnS:Mn
- Magnetic heads in hard disks
  - $Al_2O_3$
- High-k insulator for DRAM and gate oxide of CMOS
  - HfO<sub>2</sub>, HfSi<sub>x</sub>O<sub>y</sub>, Hf<sub>x</sub>Al<sub>y</sub>O, ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>
- Protective coating for jewellery (Kalevala Koru and Lapponia jewellery)
  - Al<sub>2</sub>O<sub>3</sub>
- Optical application (filters)
  - Al<sub>2</sub>O<sub>3</sub>, Ta<sub>2</sub>O<sub>5</sub>, TiO<sub>2</sub>
- New areas
  - Solar cells, fuel cells, batteries
  - OLED passivation
  - IC applications (MIM capacitor, phase change, flash, memories)



## VTT creates business from technology