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What is Carbon Nanotube?

SWNTgraphene sheet

Single-walled nanotube (SWNT) consists of a single 
layer of graphene sheet.

Multi-walled nanotube (MWNT) consists of a set of 
concentrically nested SWNTs. The inter-shell distance 
is about 0.34 nm, similar to that of turbostratic 
graphite.

MWNT
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Different Structures of Nanotubes

Example (4,2)

2
•1

•O
A

B’

B

•
• a1

a2

•
•

θ

Ch

T 4
•3• 2

•a1

1•a2

0θ = °

0 30θ< < °

30θ = °armchair

zigzag

chiral

2 2

1 3tan
2

t
L ad n nm m

m
n m

π π

θ −

⎧ = = + +⎪⎪
⎨
⎪ =⎪ +⎩

Ch = na1 + ma2 ≡ (n, m)→ → →

Theoretically, there are indefinite ways to roll-up a graphene sheet into nanotubes. 
Each nanotube can be uniquely denoted by an index (n, m).
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Nanotube: Metal or Semiconductor?
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Nanotube Structure vs Electronic Property 

The interband transition energies Eii are uniquely 
determined by the diameter and chiral angle 

Diameter dependence: Eii ∝ 1/dt
e.g. Metallic tubes: E11

M ≅ 6 γ0 aC-C / dt
Semicon. tubes: E11

S ≅ 2 γ0 aC-C / dt
E22

S ≅ 4 γ0 aC-C / dt
E33

S ≅ 8 γ0 aC-C / dt

Chiral angle θ dependence:
The trigonal warping effects  increases with decreasing chiral 
angle. This causes a deviation of Eii from Eii – dt curves for 
chiral tubes (splitting or shifting of van Hove singularities). 

E11

E22

E11



Yuegang Zhang6

Why Nanotubes?
Perfect geometry

~ 1 nm diameter
1-D nanowire with extremely high aspect ratio

Perfect atomic structure
Single crystal & single molecule

Perfect properties
Mechanical: resilience; tensile strength; Young’s modulus
Thermal: stability; conductivity
Chemical: stability
Electrical: metallic & semiconducting, ballistic transport, high 
current density, low electromigration rate, high carrier mobility…
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Nanotube Electronics

Si tri-gate transistor SWNT tri-gate transistor

Advantages of nanotube transistor…
• No surface state.
• High carrier mobility or ballistic transport.
• Natural thin channel to minimize short channel effect.
• Unique geometry enabling better gate-channel capacitive 

coupling through “fringe field” of the surrounding 
dielectrics. 

Ballistic nanotube FET (inset: Fabry-Perot-like interference pattern 
at T = 1.5 K, bright peak G ~ 4e2/h) 
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Nanotube Electronics
Other Nanotube Opportunities

Room-temperature single-electron transistor

Optoelectronics

Nano-electro-mechanical devices

Interconnect

Thermal interface materials

Nano-sensors

High density memory devices

2 nm
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How to Build Nanotube Chips?
Microchips Top-down method
Nanochips Bottom-up?

Top-down?
Bottom-up + Top-down?

65nm process
2005 production

30nm 20nm

45nm process
2007 production 32nm process

2009 production 

15nm

22nm process
2011 production 

50nm

90nm process
2003 production
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Major Challenges for HVM of CNT Devices
Electronically pure material: precise property control

– Pure metallic nanotubes for on-chip interconnection.
– Pure semiconducting nanotubes with a well-defined energy-

gap for high performance transistors and memory devices. 
Patterning technology: precise registry and 
orientation control

– Array with regular spacing.
– Connection to electrodes.

SWNT tri-gate transistor
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Synthesis of Carbon Nanotubes
Arc Discharge

Laser Ablation

Chemical Vapor Deposition (CVD)

Controllable process

Direct growth on substrate

Clean nanotubes

Inexpensive

Type of nanotube: 
- MWNT or SWNT
Diameter
Location
Orientation
Length
Chirality
- Metallic or semiconducting
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Arc Discharge
- HREM of SWNT and peapod structure

Y. Zhang et al., Phil. Mag. Lett. 79, 473 (1999)
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Laser Ablation
- in nitrogen atmosphere

Y. Zhang et al., Appl. Phys. Lett. 73, 3827 (1998)

With NiCo catalyst Without NiCo catalyst
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Exploring Exotic Nanotube Properties
Nanoelectromechanical 
System (NEMS)
Optomechanical device
Optoelectronics

Y. Zhang & S. Iijima, Phys. Rev. Lett. 82, 3472 (1999)
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Novel Heterostructured Nanotubes
- BCN & C composite nanotubes

Y. Zhang et al., Chem. Phys. Lett. 279, 264 (1997).
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Novel Heterostructured Nanowires 
- Coaxial Nanocable

Y. Zhang et al., Science 281, 973 (1998)
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Controllable Synthesis of Carbon Nanotubes

Arc Discharge

Laser Ablation

Chemical Vapor Deposition (CVD)

Controllable process

Direct growth on substrate

Clean nanotubes

Inexpensive

Type of nanotube: 
- MWNT or SWNT
Diameter
Location
Orientation
Length
Chirality
- Metallic or semiconducting
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Controlling Nanotube Type

Type of catalyst
Metal nanoparticle

Tube nucleation
Supporting materials

Make/disperse, keep 
nanoparticles

Growth condition
Feedstock gas

Provide carbon
Carrier gas

Adjust reaction
Temperature

Decompose hydrocarbon
Anneal out defects

MWNT: C2H4, 700°C (Dai group) SWNT: CH4, 900°C

DWNT: CH4+H2, 900°C  (Y. Zhang, unpublished data)
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Controlling Nanotube Diameter

Y. Li et al., J. Phys. Chem. B 105, 11424 (2001)
Y. Zhang et al., Appl. Phys. A 74, 325 (2002)

- by controlling nanoparticle size
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a

Controlling Location
– Catalyst Patterning
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Controlling Orientation - I
- Self-directed Growth of Suspended SWNT

Self-directed Self-directed Self-directed + E-field directed

(Y. Zhang, unpublished data)
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Controlling Orientation – II
- Electric-field-directed Growth

Y. Zhang et al., Appl. Phys. Lett. 79, 3155 (2001)
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Other Issues Regarding Nanotube IC

Interconnection 
Ohmic Contact

Doping
Intrinsic semiconducting nanotube?

Environment
Why semiconducting nanotube is p-type?
Device stability

Dielectric materials and Gate materials
Compatibility with nanotube IC
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Ohmic Contact
- SWNT/metal contact Ti

Ti

/Ti

/Ti

/Ti

/Ti

/Ti

/Ti

Y. Zhang & H. Dai, Appl. Phys. Lett. 77, 3015 (2000)
Y. Zhang et al., Chem. Phys. Lett. 331, 35 (2000)
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Ideal Contact Solution
- Nanotube-nanowire nanojunctions

Y. Zhang et al., Science 285, 1719 (1999) 
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Novel NT/NW Heterostructures 
- Nanowire and NW/NT Heterojunctions

Y. Zhang et al., Science 285, 1719 (1999)

A

B

A

B

SiC-SWNT TiC-SWNT
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Novel NT/NW Heterostructures 
- Hybrid nanotube-nanowire devices

Y. Zhang et al., Science 285, 1719 (1999)
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Application: Probe-based data storage

Y. Cho et al., Appl. Phys. Lett., 81, 4401 (2002).

IBM E. Cooper et al., Appl. Phys. Lett., 75, 3566 (1999).

PFM: http://www.home.agilent.com/upload/cmc_upload/All/AN-PiezoRes_103107F.pdf
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PFM principles

•http://www.home.agilent.com/upload/cmc_upload/All/AN-PiezoRes_103107F.pdf
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Advantage of using CNT probe
Small diameter small recording bit size high data 
storage density

Good electrical conductivity electrical read/write

Good mechanical strength low wear rate

High aspect ration No degradation of resolution with 
wear wear tolerant

Weak Point: buckling for long tubes, especially for 
SWNTs, under contact mode operation

Solution: dielectric enhancement: keeping small 
electrical contact; much stronger for contact mode 
operation. 
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Nanopencil W/R on ferroelectric media

N. Teyabi et al., Appl. Phys. Lett. 93, 103112 (2008)
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Sharpening Nanopencil

#1

#11

#16

N. Teyabi et al., Appl. Phys. Lett. 93, 103112 (2008)
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Application:
0D-1D System : Ultra-Sensitive Charge Sensor

– Biosensor and Single-Electron Memory Devices

Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization
R. Chen, Y. Zhang, D. Wang, H. Dai, J. Am. Chem. Soc. 123, 3838 (2001).
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Prototype CNT-QD Device

Back gated carbon nanotube 
FET (CNTFET) – Prior art

Degenerately doped Si
100 nm thermal gate oxide
5nm Cr / 50 nm Au 
source/drain

NV-memory: Superstructure on 
CNFET containing innovation:

Deposit 5 nm evaporated SiO2
Deposit Au thin film and form 
nanocrystals 
Cap the device with 30 nm 
PECVD oxide 
Etch (RIE) open the pads for 
electrical measurements

Au

Au

Back Gate
CNT

Au

Evap. SiO2

Au

Au nanocrystal

Thermal SiO2

U. Ganguly et al., Appl. Phys. Lett. 87, 043108 (2005)
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Nanotube (1D) vs Si (2D) for nano-floating 
gate  memory

Nanotube based FET
Cylinderical approximation for capacitance 
calculation – improved electrostatic coupling with 
gate – low r/w voltage.
1D electron system
Transport in 1D – no percolation
Electron is confined to nanotube and cannot 
circum-navigate around barriers 
High charge sensitivity

Planar silicon-based structures
Parallel plate approximation for capacitance 
calculation
2D electron gas under inversion
Transport governed by percolation
Charge feels minimal potential during transport
Minimal charge sensitivity

So
ur

ce

D
ra

in

Electrostatics due to nanocrystals:
Charged nanocrystals produce an egg-crate like 
potential well structure on the  plane below or above
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CNT-QD Memory Device at RT

ID vs VG for device with 
nanocrystals showing charge 
injection into traps and 
nanocrystals

Charging efficiency with QD:

ΔVth / ΔVcharge = 2V / 3V=0.67

ID vs VG for device without 
nanocrystals showing charge 
injection into traps in the 
evaporated SiO2

Charging efficiency with traps:

ΔVth / ΔVcharge = 1.2V/3V=0.4
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CNT-QD Memory Device at 
Low-Temperature

ID vs VG at T=10K for device 
WITHOUT NANOCRYSTALS
showing MINIMAL charge 
injection

ID vs VG at T=10K for device 
WITH NANOCRYSTALS
showing charge injection into 
NANOCRYSTALS only

Separating trap contribution from nanocrystal charging @ T=10K

ΔVth / ΔVcharge < 0.2V / 2.5V=0.08 ΔVth / ΔVcharge = 1.6V / 3.4V=0.5

V C
H

A
R

G
E

V C
H

A
R

G
E

H
ysteresis

H
ysteresis
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Coulomb blockade in nanocrystals: 
single-electron charging

Injection voltage (V)
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Hysteresis Measurement and Coulomb Blockade 

(a) Stepping the VCH in fine steps of 50mV 
shows aggregation of IDVG curves (b) Extraction 
of VG for arbitrary constant ID=0.95nA results 
in steps in VG due the combined effect of 
coulomb blockade in nanocrystals and single 
charge sensitivity of nanotube conductance.
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NEGF Simulation of CNTFET Charge Sensor
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PdPd CNT

Point charge

ttop

φB=0.1eV, dCNT~1.7nm, Lch=200nm, 
tbot=100nm, ttop=5nm 

2e

|Qd| increases

0e

1e

3e
0e 3e

ttop=5nm 

ttop=9nm

VD=0V and VG=0.2V
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Resonant Tunneling and Charge 
Position Dependence 
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“Bottle-neck” Effect and Resonant 
Tunneling

SiO2

p++ Si

PdPd CNT

Dot 1 Dot 2

VG = 0.4V
VD = 0V

0 1Transmission 0 1Transmission

VD=0V and VG=0.2V

Q1 = 2e, Q2 = 0 Q1 = 2e, Q2 = 2e

(Position of Dot 2)
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Electrostatic Analysis

Si CHANNEL

GATE

OXIDE
NC

GATE

NC

dc

dt
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dt
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CNT

CNT
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NC
NC

nanocrystals diameter: 6 nm; the nanotube diameter 2 nm; 
pitch: 12 nm; dt : 3 nm ( Si EEPROM) and 5 nm ( CNT-
nanocrystal memory); dc : 30 nm (Si EEPROM); dc is 
used as a parameter to calculated capacitive-coupling of 
CNT nanocrystal memory structure for different dc : 27 
nm; 30 nm ; 100 nm; .p: 12 nm (for all structures)

Structural Parameters Potential on NC (V)

dc
(nm
)

Capacitive 
Coupling 
VG=5
(Programming)

Self 
Capacitance 
qNC=5e
(Retention)

1NC-CNT BG 27 2.52 -0.517

30 2.35 -0.519

100 1.77 -0.528

1NC-CNT TG 30 2.69 -0.509

3NC-CNT BG 30 2.33 -0.68

1 NC-Si 0.81 -0.46

3 3 NC -Si 0.74 -0.67

Enhancement of electric field asymmetry in 
the CNT-NC- memory makes it easy to be 
programmed while keeping similar 
retention capability compared to the NC 
planar memory.

U. Ganguly et al., Proc. SPIE, Vol. 6003, 60030H (2005).
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Energy Band Diagram - Charging Mechanism
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Note: For 1D channel, the fringe field makes the electrostatic potential profile of the back gate geometry 
the same as top-gate geometry shown here.
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Retention Measurements
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Major Challenges for HVM of CNT Devices
Electronically pure material: precise property control

– Pure metallic nanotubes for on-chip interconnection.
– Pure semiconducting nanotubes with a well-defined energy-

gap for high performance transistors and memory devices. 
Patterning technology: precise registry and 
orientation control

– Array with regular spacing.
– Connection to electrodes.

SWNT tri-gate transistor
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Controlling diameter and orientation in CVD 
process…
• Tube diameter dependence on the size of 
catalyst nanoparticles

• Electrical-field-directed growth
However…
• The diameter difference of a metallic and a 
semiconducting nanotube can be as small as 
merely 0.03 angstroms. 

• There is no method available (yet) to control 
the chirality by controlling catalyst.

• There is no reliable 
way to control tube-
tube spacing (yet).

What in-growth control can do and cannot do…
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Nanotube functionalization
To isolate individual tubes from mixed 
bundle

Sorting
Separate nanotube types & sizes

Assembly into functional array
Directed self-assembly

Alternative Approach: Post-growth Processing

Laser
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Solubilization of SWNT

polymer wrapping micellular suspension

SWNT sidewall

DNA wrapper conjugated with 
photoluminescent (PL) dye

To overcome their poor intrinsic 
solubility, SWNTs are ultrasonically 
dispersed as individuals and wrapped 
with water-soluble surfactants or 
polymers to make them compatible 
with microfluidics and self-assembly 
reactions.

(Prior-arts)
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Chondroitin derivatives for selective solubilization
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R. Chen et al., to be submitted
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Chondroitin derivatives for selective solubilization
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De-functionalization with small 
molecules 

Poly T30-coated 
CNTs

Molecule 
replacement 
initiates DNA 
desorption

CNTs begin to re-
bundle

Desolubilized CNTs 
precipitate out

R. J. Chen and Y. Zhang, J. Phys. Chem. B 110, 54 (2006)



Yuegang Zhang52

De-functionalization using 
complementary ss-DNA

Poly A30

Poly T30-coated 
CNTs

Hybridization 
initiates DNA 
desorption

CNTs begin to re-
bundle

Desolubilized CNTs 
precipitate out

R. J. Chen and Y. Zhang, J. Phys. Chem. B 110, 54 (2006)
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De-functionalization: Selective 
Precipitation?
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Initial SWNT solution
.05 mM R6G added
0.1 mM R6G added

Initial DNA-solubilized 
SWNT solutionR6G MeB PolyA30

633 nm 
Excitation

R. J. Chen and Y. Zhang, 
J. Phys. Chem. B 110, 54 (2006)
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Optical Trapping: a new method for 
nanotube sorting

– Laser dipole trap is based on the interaction of electrical 
field with instantaneous dipole momentum induced in 
molecules (neutral particles).

– Trapping: Laser frequency < resonant frequency.
– By tuning the laser frequency, M- or S-tubes can be 

selectively trapped or released. 
– Nanotubes can be sorted according to their band-gaps 

(diameters).
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The Physics behind Optical Trapping of 
Carbon Nanotubes

Induced dipole momentum of 
a neutral particle in E-field

P = ε0χE
Energy (isotropic medium)

U = - <P·E> = - ε0χ<E>2

χ(ω) = χ’(ω) +i χ”(ω) 

When ω < ω0, χ’(ω) > 0,
∴ E↑ ⇒ U↓
The particle moves towards 
the center of a laser beam 
(assuming a Gaussian 
intensity distribution).

What is special for 1-D object?
• Dipole always parallel to the axis

P = P|| + P⊥ ≅ P|| = ε0χE||

U = - <P·E> = - ε0χ<E>2 cos Ѳ

∴ E↑ ⇒ U↓ &   Ѳ ↓ ⇒ U↓

Trapping & Alignment
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Selectivity of Optical Trapping of 
Carbon Nanotubes

The interband transition energies Eii (therefore, the optical resonance 
frequencies ω0

ii) are uniquely determined by the diameter and chirality 
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If a trapping laser is properly chosen…

Carbon nanotubes

Individual tubes

solubilization

Optical trapping

Further 
manipulation

If the sample is properly prepared…
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Experimental Setup

Hg lamp

Spectrometer
or camera

Optical trap Sample

Excitation filter

Laser

Beam splitter

Dichroic 
filter

IR filter

Emission filter

Lasers: Nd:YVO4 1064 nm
Ti:Sapphire 720-1000 nm
Millennia 532 nm

Nano Lett. 4, 1415 (2004)
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Video of optical trapping of polystyrene beads

Laser power: 100 mW. 
Laser wavelength: 1064 nm.
Beads: polystyrene, 4 um in diameter.
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Visualizing Nanotube Trapping: 
“Dark Cloud”

laser off

laser on
Samples: 

DNA-CNT and DNA-TAMRA mixture.
DNA-TAMRA concentration (0.003 μM).
SWNT concentration 0.083 mg/mL, Laser: 1064 nm; 150 mW (max.)

0 50 100 150 200 250 300

600

700

800

900

1000

1100  
off

 
off

 
off

 
off

P
L 

In
te

ns
ity

 (c
ou

nt
s)

Time (seconds)

on
50%

 
off

on
60% on

70% on
80% on

100%laser power



Yuegang Zhang61

CNT trapping video

Laser power: 300 mW 
Laser wavelength: 1064 nm
CNT-DNA-TAMRA mixture
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Optical Sorting in Microfluidic Device

Laser sweeps across the 
channel to trap CNTs 
and release them into the 
water side
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In-situ Raman / Optical Trapping

Optical
Trap

- Dual Beam -
O.T. & Raman Spectroscopy

X

Y
Z

Raman
Probe
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Z

Camera

Optical 
trap

Sample

Optical 
trapping Laser

Beam 
splitter

IR filter

Optical trapping
objective

Raman
Spectrometer

Raman 
Laser

Raman probe
objective

Holographic 
notch filters

Proceedings of SPIE, Vol 5593, pp. 73-81, 2004
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In-situ Raman / Optical Trapping - Theory

Susceptibility of the carbon nanotubes 
resonant with 785 nm (1.58 eV) Raman laser
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• The susceptibility (χ) of the 
tubes which are in resonance 
with the 785 nm Raman 
excitation are plotted. 

• At 1.16 eV (1064 nm), the tube 
at 268 cm-1 has the highest χ 
compared to other tubes. This 
is in agreement with the 
experiment.
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In-situ Raman / Optical Trapping
DNA-HiPco:1064 nm trapping, 633 nm probing
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In-situ Raman / Optical Trapping - Theory
Susceptibility of the carbon nanotubes 

resonant with 633nm (1.96 Ev) Raman laser
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• According to the simulation, 
the χ for the 0.99 nm tube is 
larger than the χ for the 0.88 
nm tube, which is somewhat 
in agreement with the 
experiment (less repelled).

• But the χ for the metallic tubes 
is even lower than that of the 
semiconducting tubes. This 
contradicts with the theory

M tubes
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lVF ichydrodynam η≈Hydrodynamic force:

Capillary force:
DL

F o
capillary /log

2πλθ
≈

Elastic deformation of contact line

liquiddry surface

icHydrodynamcapillary FF >

Other CNT Manipulation Method:
- CNT Alignment by Molecular Combing

Liquid surface concedes

• Partial anchoring of linear 
molecules

• Surface tension stretching for 
alignment

(Unpublished data)
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Other CNT Manipulation Method: 
- Dielectrophoresis

Polarization and associated motion induced in 
particles by non-uniform electric field 

εp - εm

εp + 2εm

∇E2
rmsFDEP α εm

(Unpublished data)
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2μm

Lithographically 
defined length

O2 plasma etch CNTs

sidewalls
protected

•A’ •A •B •B’

End-
functionalization

Self-assembly

Future Direction: Controlling Length and 
End-functionalization

(Unpublished data)
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= Molecules with recognition capabilities 

= Molecular probes 

Future Direction: Bottom-Up Assembly of 
Molecular Electronics

R R R
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What could controllable-synthesis and 
assembly enable?

BL,unsel
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WL,unsel
BL,sel
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WL,unsel
BL,sel

Nanotubes
Nanowires
Quantum 

Dots

Memory device

Quantum logic device

Molecular device

Energy conversion device Sensors
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Summary
Various methods can be used for nanomaterial synthesis.
CVD provides great controllability for nanotube device integration 
using a hybrid approach. 
Excellent performance demonstrated for nanotube based 
transistors and memory devices.
Great progress made in electrical contacts for nanotube devices.
Obtaining electronically pure (single chirality) nanotubes and 
regular array assembly remain to be two major challenges for 
high-volume manufacture. 
Bio-inspired functionalization and self-assembly provides great 
opportunity in addressing these challenges.
No boundaries in nanoscience and nanotechnology for physicists, 
chemists, and biologists.    
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