Carbon Nanotubes for Nanoelectronics

- Synthesis and Integration

Yuegang Zhang The Molecular Foundry, LBNL

10/24/2008

What is Carbon Nanotube?

graphene sheet

SWNT

- Single-walled nanotube (SWNT) consists of a single layer of graphene sheet.
- Multi-walled nanotube (MWNT) consists of a set of concentrically nested SWNTs. The inter-shell distance is about 0.34 nm, similar to that of turbostratic graphite.

Different Structures of Nanotubes

Theoretically, there are indefinite ways to roll-up a graphene sheet into nanotubes. Each nanotube can be uniquely denoted by an index (*n*, *m*).

Nanotube: Metal or Semiconductor?

Nanotube Structure vs Electronic Property

The interband transition energies E_{ii} are uniquely determined by the diameter and chiral angle

Diameter dependence: $E_{ii} \propto 1/d_t$ e.g. Metallic tubes: $E_{11}^{M} \cong 6 \gamma_0 a_{C-C} / d_t$ Semicon. tubes: $E_{11}^{S} \cong 2 \gamma_0 a_{C-C} / d_t$ $E_{22}^{S} \cong 4 \gamma_0 a_{C-C} / d_t$ $E_{33}^{S} \cong 8 \gamma_0 a_{C-C} / d_t$

Chiral angle θ dependence:

The trigonal warping effects increases with decreasing chiral angle. This causes a deviation of E_{ii} from $E_{ii} - d_t$ curves for chiral tubes (splitting or shifting of van Hove singularities).

Why Nanotubes?

Perfect geometry

~ 1 nm diameter

1-D nanowire with extremely high aspect ratio

Perfect atomic structure

Single crystal & single molecule

Perfect properties

Mechanical: resilience; tensile strength; Young's modulus

Thermal: stability; conductivity

Chemical: stability

Electrical: metallic & semiconducting, ballistic transport, high current density, low electromigration rate, high carrier mobility...

Nanotube Electronics

Si tri-gate transistor

SWNT tri-gate transistor

Advantages of nanotube transistor...

- No surface state.
- High carrier mobility or ballistic transport.
- Natural thin channel to minimize short channel effect.
- Unique geometry enabling better gate-channel capacitive coupling through "fringe field" of the surrounding dielectrics.

Ballistic nanotube FET (inset: Fabry-Perot-like interference pattern at T = 1.5 K, bright peak G ~ 4e²/h)

Nanotube Electronics

Other Nanotube Opportunities

- Room-temperature single-electron transistor
- ✓ Optoelectronics
- Nano-electro-mechanical devices
- ✓ Interconnect
- Thermal interface materials
- ✓ Nano-sensors
- High density memory devices

How to Build Nanotube Chips?

Microchips Nanochips

Top-down method Bottom-up? Top-down? Bottom-up + Top-down?

90nm process 2003 production

65nm process 2005 production

45nm process 2007 production

32nm process 2009 production

22nm process 2011 production

Major Challenges for HVM of CNT Devices

Electronically pure material: precise property control

- Pure metallic nanotubes for on-chip interconnection.
- Pure semiconducting nanotubes with a well-defined energygap for high performance transistors and memory devices.

Patterning technology: precise registry and orientation control

Array with regular spacing.

Connection to electrodes.

SWNT tri-gate transistor

Synthesis of Carbon Nanotubes Arc Discharge Laser Ablation Chemical Vapor Deposition (CVD)

- Controllable process
- Direct growth on substrate
- Clean nanotubes
- ✓ Inexpensive

Type of nanotube:
MWNT or SWNT
Diameter
Location
Orientation
Length
Chirality
Metallic or semiconducting

Arc Discharge - HREM of SWNT and peapod structure

Y. Zhang et al., Phil. Mag. Lett. 79, 473 (1999)

Y. Zhang et al., Appl. Phys. Lett. 73, 3827 (1998)

Without NiCo catalyst

10 nm

100 nm

10 nm

With NiCo catalyst

Exploring Exotic Nanotube Properties

Nanoelectromechanical System (NEMS) Optomechanical device Optoelectronics

Y. Zhang & S. lijima, *Phys. Rev. Lett.* 82, 3472 (1999)

Novel Heterostructured Nanotubes - BCN & C composite nanotubes

Novel Heterostructured Nanowires - Coaxial Nanocable

Y. Zhang et al., Science 281, 973 (1998)

3 µm

Controllable Synthesis of Carbon Nanotubes

Arc Discharge Laser Ablation Chemical Vapor Deposition (CVD)

Controllable process

- Direct growth on substrate
- Clean nanotubes
- Inexpensive

Type of nanotube: - MWNT or SWNT Diameter Location Orientation Length Chirality - Metallic or semiconducting

Controlling Nanotube Type

Type of catalyst Metal nanoparticle **Tube nucleation** Supporting materials Make/disperse, keep nanoparticles **Growth condition** Feedstock gas Provide carbon **Carrier** gas Adjust reaction Temperature **Decompose hydrocarbon** Anneal out defects

MWNT: C_2H_4 , 700°C (Dai group)

5<u>00 nm</u>

SWNT: CH₄, 900°C

DWNT: CH₄+H₂, 900°C (Y. Zhang, unpublished data)

Controlling Nanotube Diameter

- by controlling nanoparticle size

Y. Li et al., J. Phys. Chem. B 105, 11424 (2001)

Apoferritin

Ferritin

Controlling Location – Catalyst Patterning

а

b

С

d

Controlling Orientation - I - Self-directed Growth of Suspended SWNT

(Y. Zhang, unpublished data)

Self-directed

Self-directed

Self-directed + E-field directed

Controlling Orientation – II

Yuegang Zhang

10 µm

0 𝔍 DC, 0 𝒴/μm

5 µm

Other Issues Regarding Nanotube IC

Interconnection \checkmark **Ohmic Contact** Doping Intrinsic semiconducting nanotube? Environment Why semiconducting nanotube is p-type? **Device stability Dielectric materials and Gate materials** Compatibility with nanotube IC

Ohmic Contact - SWNT/metal contact

Y. Zhang & H. Dai, *Appl. Phys. Lett.* 77, 3015 (2000) Y. Zhang et al., *Chem. Phys. Lett.* 331, 35 (2000)

Ideal Contact Solution - Nanotube-nanowire nanojunctions

Yuegang Zhang

Novel NT/NW Heterostructures - Nanowire and NW/NT Heterojunctions

Α 100 nm B B SiC $\{111\}$ 0.25 nm 5 nm

Y. Zhang et al., Science 285, 1719 (1999)

TiC-SWNT

SiC-SWNT

Novel NT/NW Heterostructures - Hybrid nanotube-nanowire devices

Y. Zhang et al., Science 285, 1719 (1999)

Carbon Nanotube welded on a STM tip through TiC formation

Application: Probe-based data storage

Y. Cho et al., Appl. Phys. Lett., 81, 4401 (2002).

PFM: http://www.home.agilent.com/upload/cmc_upload/All/AN-PiezoRes_103107F.pdf

PFM principles

Advantage of using CNT probe

Small diameter \rightarrow small recording bit size \rightarrow high data storage density

Good electrical conductivity \rightarrow electrical read/write

Good mechanical strength \rightarrow low wear rate

High aspect ration \rightarrow No degradation of resolution with wear \rightarrow wear tolerant

Weak Point: buckling for long tubes, especially for SWNTs, under contact mode operation Solution: dielectric enhancement: keeping small electrical contact; much stronger for contact mode operation.

Nanopencil W/R on ferroelectric media

N. Teyabi et al., Appl. Phys. Lett. 93, 103112 (2008)

Sharpening Nanopencil

N. Teyabi et al., Appl. Phys. Lett. 93, 103112 (2008)

Application: OD-1D System : Ultra-Sensitive Charge Sensor – Biosensor and Single-Electron Memory Devices

Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization R. Chen, Y. Zhang, D. Wang, H. Dai, *J. Am. Chem. Soc.* 123, 3838 (2001).

Prototype CNT-QD Device

Back gated carbon nanotube FET (CNTFET) - Prior art **Degenerately doped Si** 100 nm thermal gate oxide 5nm Cr / 50 nm Au source/drain NV-memory: Superstructure on **CNFET** containing innovation: Deposit 5 nm evaporated SiO₂ Deposit Au thin film and form nanocrystals Cap the device with 30 nm **PECVD** oxide Etch (RIE) open the pads for electrical measurements

U. Ganguly et al., Appl. Phys. Lett. 87, 043108 (2005)

Nanotube (1D) vs Si (2D) for nano-floating gate memory

Electrostatics due to nanocrystals:

Charged nanocrystals produce an egg-crate like potential well structure on the plane below or above

Nanotube based FET Cylinderical approximation for capacitance calculation – improved electrostatic coupling with gate – low r/w voltage. 1D electron system Transport in 1D – no percolation Electron is confined to nanotube and cannot circum-navigate around barriers High charge sensitivity

Planar silicon-based structures

- Parallel plate approximation for capacitance calculation
- 2D electron gas under inversion Transport governed by percolation
- Charge feels minimal potential during transport Minimal charge sensitivity

CNT-QD Memory Device at RT

Charging efficiency with traps: Δ Vth / Δ Vcharge = 1.2V/3V=0.4

V for hysteresis for P
W f

 I_D vs V_G for device without nanocrystals showing charge injection into traps in the evaporated SiO₂ Charging efficiency with QD:

ΔV th / ΔV charge = **2V / 3V=0.67**

I_D vs V_G for device with nanocrystals showing charge injection into traps and nanocrystals
CNT-QD Memory Device at Low-Temperature

Separating trap contribution from nanocrystal charging @ T=10K

∆Vth / ∆Vcharge < 0.2V / 2.5V=0.08

I_D vs V_G at T=10K for device WITHOUT NANOCRYSTALS showing MINIMAL charge injection

ΔV th / ΔV charge = **1.6V / 3.4V=0.5**

I_D vs V_G at T=10K for device WITH NANOCRYSTALS showing charge injection into NANOCRYSTALS only

Coulomb blockade in nanocrystals: single-electron charging

Hysteresis Measurement and Coulomb Blockade

(a) Stepping the V_{CH} in fine steps of 50mV shows aggregation of I_DV_G curves (b) Extraction of V_G for arbitrary constant I_D=0.95nA results in steps in V_G due the combined effect of coulomb blockade in nanocrystals and single charge sensitivity of nanotube conductance.

NEGF Simulation of CNTFET Charge Sensor

J. Guo et al., J. Appl. Phys. 99, 084301 (2006)

Yuegang Zhang

0

40

60

t_{ox} [nm]

80

100

-3

-2

Gate Voltage (V)

0∟ 20

0.5

0.4

0.2 0.3 V_G[V]

10¹

10⁰

 10^{-2}

10

0

0.1

ເຊັ _____ ບ

Resonant Tunneling and Charge Position Dependence

"Bottle-neck" Effect and Resonant Tunneling

Electrostatic Analysis

nanocrystals diameter: 6 nm; the nanotube diameter 2 nm;
pitch: 12 nm; dt : 3 nm (Si EEPROM) and 5 nm (CNT-
nanocrystal memory); <i>dc</i> : 30 nm (Si EEPROM); <i>dc</i> is
used as a parameter to calculated capacitive-coupling of
CNT nanocrystal memory structure for different <i>dc</i> : 27
nm; 30 nm ; 100 nm; . <i>p</i> : 12 nm (for all structures)

Structural Parameters		Potential on NC (V)	
	<i>d_c</i> (nm)	Capacitive Coupling <i>V_G</i> =5 (Programming)	Self Capacitance q_{NC} =5 e (Retention)
1NC-CNT BG	27	2.52	-0.517
	30	2.35	-0.519
	100	1.77	-0.528
1NC-CNT TG	30	2.69	-0.509
3NC-CNT BG	30	2.33	-0.68
1 NC-Si		0.81	-0.46
3 3 NC -Si		0.74	-0.67

Enhancement of electric field asymmetry in the CNT-NC- memory makes it easy to be programmed while keeping similar retention capability compared to the NC planar memory.

Energy Band Diagram - Charging Mechanism

Note: For 1D channel, the fringe field makes the electrostatic potential profile of the back gate geometry the same as top-gate geometry shown here.

Retention Measurements

-20

-60

-40

0

Distance Z (nm)

20

40

60

Yuegang Zhang

Major Challenges for HVM of CNT Devices

Electronically pure material: precise property control

- Pure metallic nanotubes for on-chip interconnection.
- Pure semiconducting nanotubes with a well-defined energygap for high performance transistors and memory devices.

Patterning technology: precise registry and orientation control

- Array with regular spacing.
- Connection to electrodes.

SWNT tri-gate transistor

What in-growth control can do and cannot do...

Controlling diameter and orientation in CVD process...

- Tube diameter dependence on the size of catalyst nanoparticles
- Electrical-field-directed growth

However...

- The diameter difference of a metallic and a semiconducting nanotube can be as small as merely 0.03 angstroms.
- There is no method available (yet) to control the chirality by controlling catalyst.

• There is no reliable way to control tubetube spacing (yet).

Alternative Approach: Post-growth Processing

Nanotube functionalization To isolate individual tubes from mixed bundle Sorting Separate nanotube types & sizes Assembly into functional array Directed self-assembly

Solubilization of SWNT

(Prior-arts)

polymer wrapping

micellular suspension

To overcome their poor intrinsic solubility, SWNTs are ultrasonically dispersed as individuals and wrapped with water-soluble surfactants or polymers to make them compatible with microfluidics and self-assembly reactions.

Chondroitin derivatives for selective solubilization

R. Chen et al., to be submitted

Chondroitin derivatives for selective solubilization

De-functionalization with small molecules

R. J. Chen and Y. Zhang, J. Phys. Chem. B 110, 54 (2006)

Poly T₃₀-coated CNTs Molecule replacement initiates DNA desorption CNTs begin to rebundle Desolubilized CNTs precipitate out

3

De-functionalization using complementary ss-DNA

R. J. Chen and Y. Zhang, J. Phys. Chem. B 110, 54 (2006)

De-functionalization: Selective Precipitation?

Optical Trapping: a new method for nanotube sorting

- Laser dipole trap is based on the interaction of electrical field with instantaneous dipole momentum induced in molecules (neutral particles).
- Trapping: Laser frequency < resonant frequency.
- By tuning the laser frequency, M- or S-tubes can be selectively trapped or released.
- Nanotubes can be sorted according to their band-gaps (diameters).

The Physics behind Optical Trapping of Carbon Nanotubes

Induced dipole momentum of a neutral particle in E-field $P = \varepsilon_0 \chi E$ Energy (isotropic medium) $U = - \langle P \cdot E \rangle = -\varepsilon_0 \chi \langle E \rangle^2$ $\chi(\omega) = \chi'(\omega) + i \chi''(\omega)$

When $\omega < \omega_0, \chi'(\omega) > 0,$ $\therefore E \uparrow \Rightarrow U \downarrow$ The particle moves towards the center of a laser beam (assuming a Gaussian intensity distribution).

What is special for 1-D object?

Dipole always parallel to the axis

 $P = P_{\parallel} + P_{\perp} \cong P_{\parallel} = \varepsilon_{0} \chi E_{\parallel}$ $U = - \langle P \cdot E \rangle = - \varepsilon_{0} \chi \langle E \rangle^{2} \cos \theta$ $\therefore E^{\uparrow} \Rightarrow U^{\downarrow} \& \theta^{\downarrow} \Rightarrow U^{\downarrow}$

Trapping & Alignment

Selectivity of Optical Trapping of Carbon Nanotubes

The interband transition energies E_{ii} (therefore, the optical resonance frequencies ω_0^{ii}) are uniquely determined by the diameter and chirality

If the sample is properly prepared... If a trapping laser is properly chosen...

Experimental Setup

Video of optical trapping of polystyrene beads

Laser power: 100 mW. Laser wavelength: 1064 nm. Beads: polystyrene, 4 um in diameter.

Visualizing Nanotube Trapping: "Dark Cloud"

CNT trapping video

Laser power: 300 mW Laser wavelength: 1064 nm CNT-DNA-TAMRA mixture

Optical Sorting in Microfluidic Device

Laser sweeps across the channel to trap CNTs and release them into the water side

In-situ Raman / Optical Trapping

Proceedings of SPIE, Vol 5593, pp. 73-81, 2004

In-situ Raman / Optical Trapping

DNA-HiPco: 1064 nm trapping, 785 nm probing

Enrichment of d = 0.9 nm tubes

In-situ Raman / Optical Trapping - Theory

Susceptibility of the carbon nanotubes resonant with 785 nm (1.58 eV) Raman laser

1064 nm 1.16eV

- The susceptibility (χ) of the tubes which are in resonance with the 785 nm Raman excitation are plotted.
- At 1.16 eV (1064 nm), the tube at 268 cm⁻¹ has the highest χ compared to other tubes. This is in agreement with the experiment.

In-situ Raman / Optical Trapping

DNA-HiPco: 1064 nm trapping, 633 nm probing

S-tubes were repelled

In-situ Raman / Optical Trapping - Theory

Susceptibility of the carbon nanotubes resonant with 633nm (1.96 Ev) Raman laser

- According to the simulation, the χ for the 0.99 nm tube is larger than the χ for the 0.88 nm tube, which is somewhat in agreement with the experiment (less repelled).
- But the *x* for the metallic tubes is even lower than that of the semiconducting tubes. This contradicts with the theory

Other CNT Manipulation Method: - CNT Alignment by Molecular Combing

(Unpublished data)

Other CNT Manipulation Method: - Dielectrophoresis

Polarization and associated motion induced in particles by non-uniform electric field

 $\vec{F}_{\text{DEP}} \alpha \epsilon_{\text{m}} \frac{\varepsilon_{\text{p}} - \varepsilon_{\text{m}}}{\varepsilon_{\text{p}} + 2\varepsilon_{\text{m}}} \nabla E^{2}_{\text{rms}}$

69

Future Direction: Controlling Length and End-functionalization

O₂ plasma etch CNTs

Endfunctionalization

Self-assembly

(Unpublished data)

Future Direction: Bottom-Up Assembly of Molecular Electronics

What could controllable-synthesis and assembly enable?

Summary

Various methods can be used for nanomaterial synthesis. CVD provides great controllability for nanotube device integration using a hybrid approach. **Excellent performance demonstrated for nanotube based** transistors and memory devices. **Great progress made in electrical contacts for nanotube devices. Obtaining electronically pure (single chirality) nanotubes and** regular array assembly remain to be two major challenges for high-volume manufacture. **Bio-inspired functionalization and self-assembly provides great**

opportunity in addressing these challenges.

No boundaries in nanoscience and nanotechnology for physicists, chemists, and biologists.

Acknowledgement

NEC Fundamental Research Labs:

Summit lijima (NEC Corp., JST, Meijio Univ.), Toshinari Ichihashi (NEC), Kazu Suenaga (JST)

Stanford University:

Hongjie Dai, Qian Wang, Jing Kong, Robert Chen, Nathan Franklin, Jien Cao, Woong Kim, Yiming Li, Erhan Yenilmez, Aileen Chang, Nathan Morris

Intel Carbon Nanotube Strategic Research Team Members:

Yuegang Zhang (Project Leader) Shida Tan Herman Lopez Robert Chen Michael Stewart Victor Brar (intern, MIT / UC Berkeley) Udayan Ganguly (Intern, Cornell Univ) Colin Cai (visiting researcher) Marci Liao (visiting researcher) Edwin Kan (visiting professor, Cornell Univ)

Other collaborators:

<image>

J. Guo (Univ of Florida) N, Teyabi (Intel/UIUC), Y. Narui (Caltech), P. Collier (Caltech), K. Giapis (Caltech)