
Inside Out: Visualizing chemical transformations and light-matter interactions with nanometer-scale 
resolution 
  
In Pixar’s Inside Out, Joy proclaims, “Do you ever look at someone and wonder, what’s going on inside?” My group asks 
the same question about nanomaterials whose function plays a critical role in energy and biologically-relevant processes. 
This presentation will describe new techniques that enable in situ visualization of chemical transformations and light-
matter interactions with nanometer-scale resolution. We focus in particular on i) ion-induced phase transitions; ii) optical 
forces on enantiomers; and iii) nanomechanical forces using unique electron, atomic, and optical microscopies. First, we 
explore nanomaterial phase transitions induced by solute intercalation, to understand and improve materials for energy 
storage applications.  As a model system, we investigate hydrogen intercalation in palladium nanocrystals. Using 
environmental electron microscopy and spectroscopy, we monitor this reaction with sub-2-nm spatial resolution and 
millisecond time resolution. Particles of different sizes, shapes, and crystallinities exhibit distinct thermodynamic and 
kinetic properties, highlighting several important design principles for next-generation energy storage devices. Then, we 
investigate optical tweezers that enable selective optical trapping of nanoscale enantiomers, with the ultimate goal of 
improving pharmaceutical and agrochemical efficacy. These tweezers are based on plasmonic apertures that, when 
illuminated with circularly polarized light, result in distinct forces on enantiomers. In particular, one enantiomer is 
repelled from the tweezer while the other is attracted. Using atomic force microcopy, we map such chiral optical forces 
with pico-Newton force sensitivity and 2 nm lateral spatial resolution, showing distinct force distributions in all three 
dimensions for each enantiomer. Finally, we present new nanomaterials for efficient and force-sensitive 
upconversion. These optical force probes exhibit reversible changes in their emitted color with applied nano- to micro-
Newton forces. We show how these nanoparticles provide a platform for understanding intra-cellular mechanical 
signaling in vivo, using C. elegans as a model organism. 
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