Amorphous silicon thin-film transistors for flexible electronics

Helena Gleskova, I-Chun Cheng, Ke Long, Sigurd Wagner, James Sturm

Department of Electrical Engineering and
Princeton Institute for the Science and Technology of Materials
Princeton University

Zhigang Suo
Division of Engineering and Applied Sciences, Harvard University

The work at Princeton University is supported by the United States Display Consortium.

Berkeley, April 13, 2007
Flexible displays

Lucent, E-Ink

http://www.eink.com/iim/sale.html
Transistor “backplane” and display “frontplane”

Schematic cross section of a display

Amorphous silicon thin film transistor generic backplane

- TFT backplane is generic for all flat panel technologies
- Add display layer on top

Outline

- Metal versus plastic foil substrate
- a-Si:H TFT deposition temperature
- Overlay alignment
Steel versus plastic

<table>
<thead>
<tr>
<th>Property</th>
<th>Polymer Foil</th>
<th>Steel Foil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process temperature</td>
<td>up to ~1000°C</td>
<td>low</td>
</tr>
<tr>
<td>Dimensional stability</td>
<td>> 10 times higher</td>
<td>> 10 times higher</td>
</tr>
<tr>
<td>Visually clear</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Permeable to O₂ or H₂O</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Surface roughness</td>
<td>rough</td>
<td>moderate</td>
</tr>
<tr>
<td>Inert to chemicals</td>
<td>yes</td>
<td>some</td>
</tr>
<tr>
<td>Electrical conductor</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Kattamis A.Z., Princeton University

<table>
<thead>
<tr>
<th>Property</th>
<th>Steel Foil</th>
<th>Plastic Foil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Temperature</td>
<td>up to ~1000°C</td>
<td>< 280°C</td>
</tr>
<tr>
<td>Dimensional Stability</td>
<td>> 10 times higher</td>
<td>low</td>
</tr>
<tr>
<td>Visually Clear</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Permeable to O₂ or H₂O</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Surface Roughness</td>
<td>rough</td>
<td>some</td>
</tr>
<tr>
<td>Inert to Chemicals</td>
<td>yes</td>
<td>some</td>
</tr>
<tr>
<td>Electrical Conductor</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
$\frac{I_{on}}{I_{off}} > 10^7$, $\mu_{lin} \sim 0.45 \text{ cm}^2/\text{Vs}$, $V_T \sim 2 \text{ V}$

Acceptable TFT performance, but …

Bias-stress instability of a-Si:H TFTs

Stress time: 600 sec
Initial
After stress of $V_g = 20$ V

a-Si TFT stability rises with process temperature

⇒ Must make a-Si:H TFTs at high process temperature

α-Si:H TFTs made on clear plastic at 280°C

Cherenack K., Princeton University
\(\Delta V_T \) depends only on process T, not on substrate material

Steel versus plastic

- Polymer foil substrate
- Steel foil substrate

<table>
<thead>
<tr>
<th>Property</th>
<th>Steel</th>
<th>Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process temperature</td>
<td>< 280°C</td>
<td>up to ~1000°C</td>
</tr>
<tr>
<td>Dimensional stability</td>
<td>low</td>
<td>> 10 times higher</td>
</tr>
<tr>
<td>Visually clear</td>
<td>some</td>
<td>no</td>
</tr>
<tr>
<td>Permeable to O₂ or H₂O</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Surface roughness</td>
<td>moderate</td>
<td>rough</td>
</tr>
<tr>
<td>Inert to chemicals</td>
<td>some</td>
<td>yes</td>
</tr>
<tr>
<td>Electrical conductor</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Substrate stiffness affects dimensional stability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Y_s \cdot d_s$ versus $Y_f \cdot d_f$</td>
<td>thin film (small d_f)</td>
<td></td>
</tr>
<tr>
<td>stiff (large Y_f)</td>
<td>compliant (small Y_f)</td>
<td></td>
</tr>
<tr>
<td>poly-Si TFT / steel substrate</td>
<td>OLED / steel substrate</td>
<td></td>
</tr>
<tr>
<td>stiff (large Y_s)</td>
<td>$Y_s \cdot d_s \gg Y_f \cdot d_f$</td>
<td></td>
</tr>
<tr>
<td>thick substrate (large d_s)</td>
<td>$Y_s \cdot d_s \gg Y_f \cdot d_f$</td>
<td></td>
</tr>
<tr>
<td>compliant (small Y_s)</td>
<td>$Y_s \cdot d_s \approx Y_f \cdot d_f$</td>
<td></td>
</tr>
<tr>
<td>a-Si TFT / polymer substrate</td>
<td>OTFT / polymer substrate</td>
<td></td>
</tr>
<tr>
<td>Gleskova H., Princeton University</td>
<td>Jackson T., Penn State Univ.</td>
<td></td>
</tr>
</tbody>
</table>
a-Si:H TFT process

1. Front SiN\textsubscript{x} passivation
2. Back SiN\textsubscript{x} passivation
3. Cr gate metal deposition
4. Cr gate patterning - **mask 1**

5. PECVD TFT stack: 5 W SiN$_x$
 (i) a-Si:H
 (n$^+$) a-Si:H

6. Cr S/D deposition

7. S/D patterning – **mask 2**

Location of alignment marks

feature of mask 1: bottom gate metal layer

feature of mask 2: S/D layer

5W gate SiN$_x$

Average shrinkage ~ 500 ppm

12W gate SiN_x

Average change ~ 100 ppm

Film grown on foil substrate at elevated temperature

Substrate at room temperature T_r

Substrate at deposition temperature T_d

Free-standing film at T_d

Workpiece at T_d after film growth

Film and substrate at T_r if they were separated

Workpiece at T_r when held flat

$$
\varepsilon_s(T_r) = \left[\left(\alpha_f - \alpha_s \right) \cdot (T_r - T_d) + \varepsilon_{bi} \right] \frac{Y_s d_s}{1 + \frac{Y_f d_f}{Y_f d_f}}
$$

$$
\nu_f = \nu_s
$$

Film release from the substrate holder

Workpiece at T_r when held flat

Workpiece at T_r when released from the substrate holder

SiN$_x$

Bare 8 19 24 40 mW/cm2

\[
R = \frac{d_s}{6 \frac{Y_f d_f}{Y_s d_s} (1 + \nu) \left[(\alpha_f - \alpha_s) \cdot (T_r - T_d) + \varepsilon_{bi} \right]} \cdot \frac{\left(1 - \frac{Y_f d_f^2}{Y_s d_s^2} \right)^2}{\left(1 + \frac{d_f}{d_s} \right) \left(1 + \frac{d_f}{d_s} \right)^2} + 4 \frac{Y_f d_f}{Y_s d_s} \left(1 + \frac{d_f}{d_s} \right)^2
\]

Steel foil

A rigid substrate foil is not changed much by CTE mismatch
Possible to maintain reasonable overlay accuracy

Stress built into the Si$_{N_x}$ can compensate thermal mismatch and eliminate curvature and misalignment.

Kapton foil

Summary

• Higher deposition temperatures needed for good TFT stability

• Deposition at elevated temperature changes in-plane dimensions

• Changes are small if \(\frac{d_f}{d_s} \leq 0.05 \) (steel) or \(\frac{d_f}{d_s} \leq 0.001 \) (Kapton)

• CTE mismatch change in in-plane dimensions is
 \(~ 20 \text{ ppm for a-Si:H TFTs on 100-\textmu m steel foil}~\)
 \(~ 500 \text{ ppm for a-Si:H TFTs on 100-\textmu m Kapton foil}~\)

• Tailor built-in stress in the film to compensate CTE mismatch
 \(\Rightarrow \) possible to eliminate misalignment
 \(\Rightarrow \) possible to eliminate curvature of the workpiece