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Transition from Planar 

MOSFETs to FinFETs and its 

Impact on Design and Variability

Victor Moroz
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TEM Images of High Performance FETs

90nm node 65nm node 45nm node       32nm node

All TEM images here have the same scale

• Very little change in physical gate length, only ~0.9x per node

• The gate pitch is scaling fast, as 0.7x per node and area scales as 0.5x

• Most of the transistor innovation is in stress engineering and HKMG

100nm
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TEM Images of High Performance FETs

90nm node 65nm node 45nm node       32nm node

All TEM images here have the same scale

• Very little change in physical gate length, only ~0.9x per node

• The gate pitch is scaling fast, as 0.7x per node and area scales as 0.5x

• Most of the transistor innovation is in stress engineering and HKMG

100nm

0.7x scaling
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• ITRS for a long time 

(from 2003 to 2008) 

insisted on extrapolating 

poly gate length to zero

• This corresponds to 

straightforward 0.7x 

scaling per generation

• Meanwhile, the industry 

kept a much slower, 0.9x 

scaling pace from 90nm 

to 30nm

Transistor Size Evolution: Poly Gate
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Transistor Size Evolution: Poly Gate
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(from 2003 to 2008) 

insisted on extrapolating 

poly gate length to zero

• This corresponds to 

straightforward 0.7x 

scaling per generation

• Meanwhile, the industry 

kept a much slower, 0.9x 

scaling pace from 90nm 

to 30nm



8© Synopsys 2011

Source Drain

Gate

S/D overlap

Transistor Size Evolution: S/D Overlap
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• Source/drain overlap 

has been quickly 

shrinking
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Scaling of Leff (Junction-to-Junction)

100nm

90 nm node 32 nm node

25nm 24nm

30nm45nm

100nm

• Lgate shrinks very slow

• S/D overlap shrinks fast

• Leff stays almost fixed
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Transistor Size Evolution: L Effective

25 25 25

24
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• Effective channel length 

did not change at all!

• Effective channel length 
is defined as distance 
between source and 
drain junctions

• It determines how far the 
electrons/holes have to 
go

• It determines carrier 
transport and transistor 
variability
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• Classic scaling is dead

• Stress engineering is 

huge, bigger than HKMG

• At 32nm node, stress 

enhances hole mobility 

by 3.5x

• SiGe plays a key role in 

PMOS

• Si:C is used in NMOS, 

but is less efficient

Role of Stress Engineering in CMOS

K. Kuhn et al, ECS 2010 (Intel)
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Transistor Size Evolution: Extrapolation?
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• There is a sweet spot in 

terms of Leff that 

nobody wants to change

• This is not a “brick wall”, 

but the best Ion/Ioff ratio

• Shorter transistors with 

conventional planar bulk 

architecture are inferior
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Transistor Size Evolution: Extrapolation?
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• There is a sweet spot in 

terms of Leff that 

nobody wants to change

• This is not a “brick wall”, 

but the best Ion/Ioff ratio

• Shorter transistors with 

conventional planar bulk 

architecture are inferior

• This trend can not 

continue, as there’s no 

space left for the contact
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Transistor Size Evolution: Gate Pitch

• Conventional planar 

MOSFET quickly runs 

out of space for contacts
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• Yes, here are several examples:

• But, their performance is inferior to the 

current MOSFET with Leff = 25nm

Are Smaller Transistors Possible?

15nm AMD IEDM 2001 10nm Intel Tech. J. 2002 6nm IBM SSDM 2002
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Why MOSFETs Dislike Scaling?

Good current is 

controlled by the 

gate (can be turned 

off)

Bad current is too 

far from the gate

High halo doping is 

used to suppress 

DIBL, but it degrades 

the on-current and 

increases BTBT 

leakage

Source Drain

Gate

M
e
ta

l 
0

Bad

current
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Typical Drain Junction Leakage Map

• Band-to-band tunneling 

happens at the tip of 

drain extension, just 

outside of the gate

• This is where high field 

overlaps with high halo 

doping



18© Synopsys 2011

• Simple solution:

– Keep the channel close to the gate

– Remove current paths that are away from the 

gate

• This can be achieved in either:

– FDSOI, or

– FinFET

What Can Be Done?
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Transistor Size Evolution: Future
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• At 20nm node, the trend 

can continue

• At 15nm node, switch to 

FinFETs or FDSOI is 

necessary

• FinFETs benefit from 

S/D underlap, not 

overlap
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Transistor Size Evolution: ITRS 2009
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• At 20nm node, the trend 

will continue

• At 15nm node, switch to 

FinFETs or FDSOI is 

necessary

• FinFETs benefit from 

S/D underlap, not 

overlap

• ITRS 2009 is in line with 

this vision (finally!)
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Transistor Size Evolution: SRAM
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• SRAM occupies large 

part of the chip

• Yet, it’s size lags 4 

generations behind the 

logic!

• This is due to the:
– Variability

– Leakage
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Scaling vs. Modeling Approaches
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Number of 

lattice 

atoms 

along Leff

Number of 

lattice 

atoms in 

channel

Number of 

electrons/

holes per 

switch

90 >= 640,000 >= 60

64 >= 160,000 >= 40

40 >= 32,000 >= 20

16 >= 1,000 >= 3
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Scaling vs. Modeling Approaches
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Adequate model

~10% Augmented drift-diffusion

~30% Augmented drift-diffusion

>30% NEGF + scattering

>50% DFT
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ETSOI   aka   UTSOI   aka   FDSOI
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Current Is Always Within Gate’s Reach

Current density map

SOI thickness has to 

be ~5nm +/-1nm 

across 300mm wafer

Source Drain

Gate

oxide

Si wafer
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• FDSOI has very low stress 

transfer efficiency for both 

SiGe S/D and strained gate

• Only ~12% of stress is 

transferred to the channel

• Compare this to >50% 

stress transfer efficiency for 

bulk planar FETs & FinFETs

20nm FDSOI MOSFET Stress Engineering

FDSOI similar to the one reported by IBM at IEDM 2009

1 GPa

stress

source

120 MPa
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• Can be scaled better than planar MOSFET

• Low off-state leakage – good for LP

• Similar layout style to planar MOSFETs

• Expensive

• No good stress engineering

• Can not compete with FinFET’s

performance

FDSOI Summary
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SuVolta Monster Patent

• Keep the same masks, same libraries as in standard CMOS

• Less Vt variability, therefore possible to reduce Vdd and power consumption
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“SuVolta Claims Half the Power for Mobile SoCs”

• Keep all stress engineering tricks

• Add a couple epi steps

• In a way, it mimics FDSOI

• Can be scaled down to 15nm

http://semimd.com/wp-content/uploads/2011/06/VDD470.jpg
http://semimd.com/wp-content/uploads/2011/06/Benefits470.jpg
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• A must for Si

• Perhaps not necessary for high-m

materials

• No good way to do it in SOI

• No SMT for FinFETs and nano-wires

• For gate-last HKMG:

– CESL is useless

– Main stress source is strained elevated S/D

Stress Engineering



34© Synopsys 2011

Stress Source Evolution

PMOS 

eSiGe

PMOS
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Last
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eSi:C

NMOS
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• During SPER with 

restricted boundary, 

amorphized Si S/D gets 

dislocations with {111} 

stacking faults

• Each stacking fault is a 

missing {111} plane (i.e. 

vacancies)

• The missing {111} plane 

creates tensile stress in the 

direction perpendicular to 

the plane

{111} Stacking Faults Due to SMT

Intel 32nm NMOSFET

https://lh3.googleusercontent.com/-Xgsf2i715Vw/TYdf1WAWoVI/AAAAAAAAAHY/9YFXlsqIGnw/s1600/Intel+32nm+NMOS_branded.png
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Stress Induced by {111} Stacking Fault

• Missing (i.e. vacancy) 

{111} plane due to SMT 

for a 30nm deep 

amorphized Si

• ~350 MPa tensile 

longitudinal stress is 

present in the channel

• Each pair of stacking 

faults increases electron 

mobility by 5%
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It is a Bad Idea to Amorphize FinFETs

Experimental results from Duffy et al. 

Appl. Phys. Lett. 90, 241912 (2007)
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Three Major Issues for Non-Si Channels

Planar MOSFET modeled with Schroedinger eq’n L. Smith et al, MRS 2007

Can not scale Leff <15nm Can not scale W <4nm Huge interface traps

N
o
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i 
IP

L
W

it
h

 S
i 
IP

L

Oktyabrsky et al, Mat. Sci. Eng. B 2006
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Technology node, nm

• Any new technology has to last at least 2 nodes

• SiGe channel is easier to manufacture

• High Ge content SiGe or pure Ge or GeSn to follow

• III-V materials have a narrow opportunity window

Opportunity Window for Non-Si Channel

III-V process

is not ready

III-V becomes

worse than Si

SiGe,

Ge,

GeSn

III-V
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FinFET Analysis

Proximity effects

{111} facets

Gate 1

Gate 2

Drain

S

S

Variability

Conformal doping

Patterning
Stress engineering

Leakage

Parasitic R & C

Collapse
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Thin-Layer Mobility for (100) & (110) Si

Experimental Data

- e- µ for (100) – K. Uchida, IEDM2002  pp47-50

- h+ µ for (100) – K. Uchida, IEDM2002  pp47-50

- e- µ for (110) – T. Hiramoto, IEDM2005  pp729-732

- h+ µ for (110) – T. Hiramoto, EDL2005  pp836-838
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Severe mobility degradation 

happens below ~3 nm
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• This means that it really 

pays off to narrow the fin

• To narrow the fin, two STI 

depths are required

10nm FinFET: Improves As Fin Narrows
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• Auto-Orientation is a must

• High-order planes?

• Rough side surfaces?

Orientation Effects

S D

(110)
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• Auto-Orientation is a must

• High-order planes?

• Rough side surfaces?

Orientation Effects

S D

(110)
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Planar MOSFETs are not Planar Anyway!

Even in a 90nm planar MOSFET, the channel surface 

is not planar, but everybody models it as a flat (100)
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• Key for scaling power consumption

• Currently dominated by RDF

• For undoped FinFETs and nano-wires 

variability will be dominated by CD and 

LER

Variability
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• -1 GPa

• -5 GPa

• Zero stress

• Huge stress 

variations, 

especially at the 

S/D junctions

• To get average fin 

stress of ~2 GPa, 

peak stress in the 

fin exceeds 

dangerous 5 GPa

Non-Uniform Fin Stress Patterns
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• Double vias are not necessary any more, 
so:

– No corners/jogs

– All lines on all levels can be straight lines

• Patterning can be done with double and 
quadruple spacer litho

• LER is an increasing issue

• {111} epi and etch facets can help to 
extend patterning to the end of roadmap

Patterning
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Larger Scale: Time evolution. |
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Larger Scale: Time evolution. -
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Larger Scale: Time evolution. |
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• {100} planes are 

the roughest

• {110} planes are 

smoother

• {111} planes are 

the smoothest

Microscopic Surface Roughness

{111} nano-

islands

{111} 

plane

{100} plane {110} plane
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• Requires changes in process & design

• Very sensitive to geometry

• Requires spacer lithography

• Insensitive to random dopant fluctuations

• Provides high performance

• Easy for stress engineering

• Enables scaling to 15nm and 10nm

• Will likely become mainstream architecture

FinFET Conclusions
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• Major players consider it for DRAM

• Good potential for “universal memory”

• Can be used for low-power logic

– Requires different circuits

– Driven by I, not V

• CoFeB demonstrated working down to 

5nm islands

STT-RAM: DRAM Replacement?
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Summary


